Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Children (Basel) ; 10(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37238450

RESUMEN

Anorectal malformations (ARM) are individually common, but Congenital Pouch Colon (CPC) is a rare anorectal anomaly that causes a dilated pouch and communication with the genitourinary tract. In this work, we attempted to identify de novo heterozygous missense variants, and further discovered variants of unknown significance (VUS) which could provide insights into CPC manifestation. From whole exome sequencing (WES) performed earlier, the trio exomes were analyzed from those who were admitted to J.K. Lon Hospital, SMS Medical College, Jaipur, India, between 2011 and 2017. The proband exomes were compared with the unaffected sibling/family members, and we sought to ask whether any variants of significant interest were associated with the CPC manifestation. The WES data from a total of 64 samples including 16 affected neonates (11 male and 5 female) with their parents and unaffected siblings were used for the study. We examined the role of rare allelic variation associated with CPC in a 16 proband/parent trio family, comparing the mutations to those of their unaffected parents/siblings. We also performed RNA-Seq as a pilot to find whether or not the genes harboring these mutations were differentially expressed. Our study revealed extremely rare variants, viz., TAF1B, MUC5B and FRG1, which were further validated for disease-causing mutations associated with CPC, further closing the gaps of surgery by bringing intervention in therapies.

3.
Cancers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35158942

RESUMEN

Familial colorectal cancer (CRC) is only partially explained by known germline predisposing genes. We performed whole-genome sequencing in 15 Polish families of many affected individuals, without mutations in known CRC predisposing genes. We focused on loss-of-function variants and functionally characterized them. We identified a frameshift variant in the CYBA gene (c.246delC) in one family and a splice site variant in the TRPM4 gene (c.25-1 G > T) in another family. While both variants were absent or extremely rare in gene variant databases, we identified four additional Polish familial CRC cases and two healthy elderly individuals with the CYBA variant (odds ratio 2.46, 95% confidence interval 0.48-12.69). Both variants led to a premature stop codon and to a truncated protein. Functional characterization of the variants showed that knockdown of CYBA or TRPM4 depressed generation of reactive oxygen species (ROS) in LS174T and HT-29 cell lines. Knockdown of TRPM4 resulted in decreased MUC2 protein production. CYBA encodes a component in the NADPH oxidase system which generates ROS and controls, e.g., bacterial colonization in the gut. Germline CYBA variants are associated with early onset inflammatory bowel disease, supported with experimental evidence on loss of intestinal mucus barrier function due to ROS deficiency. TRPM4 encodes a calcium-activated ion channel, which, in a human colonic cancer cell line, controls calcium-mediated secretion of MUC2, a major component of intestinal mucus barrier. We suggest that the gene defects in CYBA and TRPM4 mechanistically involve intestinal barrier integrity through ROS and mucus biology, which converges in chronic bowel inflammation.

4.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163215

RESUMEN

Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Only 5% of all CRC cases are due to germline mutations in known predisposition genes, and the remaining genetic burden still has to be discovered. In this study, we performed whole-exome sequencing on six members of a Polish family diagnosed with CRC and identified a novel germline variant in the protein tyrosine kinase 7 (inactive) gene (PTK7, ENST00000230419, V354M). Targeted screening of the variant in 1705 familial CRC cases and 1674 healthy elderly individuals identified the variant in an additional familial CRC case. Introduction of this variant in HT-29 cells resulted in increased cell proliferation, migration, and invasion; it also caused down-regulation of CREB, p21 and p53 mRNA and protein levels, and increased AKT phosphorylation. These changes indicated inhibition of apoptosis pathways and activation of AKT signaling. Our study confirmed the oncogenic function of PTK7 and supported its role in genetic predisposition of familial CRC.


Asunto(s)
Moléculas de Adhesión Celular/genética , Neoplasias Colorrectales/genética , Proteínas Tirosina Quinasas Receptoras/genética , Anciano , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Familia , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Oncogenes , Linaje , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteína p53 Supresora de Tumor/genética , Secuenciación del Exoma/métodos
5.
Front Immunol ; 12: 724914, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745097

RESUMEN

The year 2019 has seen an emergence of the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease of 2019 (COVID-19). Since the onset of the pandemic, biological and interdisciplinary research is being carried out across the world at a rapid pace to beat the pandemic. There is an increased need to comprehensively understand various aspects of the virus from detection to treatment options including drugs and vaccines for effective global management of the disease. In this review, we summarize the salient findings pertaining to SARS-CoV-2 biology, including symptoms, hosts, epidemiology, SARS-CoV-2 genome, and its emerging variants, viral diagnostics, host-pathogen interactions, alternative antiviral strategies and application of machine learning heuristics and artificial intelligence for effective management of COVID-19 and future pandemics.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/fisiología , Inteligencia Artificial , COVID-19/epidemiología , Comorbilidad , Heurística , Interacciones Huésped-Patógeno , Humanos , Pandemias , Proteómica , Transcriptoma
7.
Adv Exp Med Biol ; 1302: 25-39, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34286439

RESUMEN

The tumor microenvironment represents a dynamic and complex cellular network involving intricate communications between the tumor and highly heterogeneous groups of cells, including tumor-supporting immune and inflammatory cells, cancer-associated fibroblasts, endothelial cells, tumor-associated macrophages, adipose cells, and pericytes. Associated with a variety of growth factors, chemokines, cytokines, and other signaling molecules, the interaction between the tumor microenvironment and the tumor cells empowers aggressiveness of tumor by enhancing its survivability. CXCL8 (also known as Interleukin 8), a multifunctional proinflammatory chemokine that was initially classified as a neutrophil chemoattractant, recently has been found to be a key contributor in tumorigenesis. The upregulation of CXCL8 at the tumor invasion front in several human cancers suggests its interplay between the tumor and its microenvironment rendering tumor progression by enhancing angiogenesis, tumor genetic diversity, survival, proliferation, immune escape, metastasis, and multidrug resistance. The autocrine and paracrine modulation of CXCL8 via the chemokine receptors CXCR1/2 promotes several intracellular signaling cascades that fosters tumor-associated inflammation, reprogramming, epithelial-mesenchymal transition, and neovascularization. Hence, decrypting the regulatory/signaling cascades of CXCL8 and its downstream effects may harbor prognostic clinical prospects of a tumor microenvironment-oriented cancer therapeutics.


Asunto(s)
Interleucina-8 , Microambiente Tumoral , Células Endoteliales , Humanos , Receptores de Interleucina-8A , Receptores de Interleucina-8B
8.
Cancers (Basel) ; 13(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200336

RESUMEN

Small cell lung carcinoma (SCLC) is a highly aggressive malignancy with a very high mortality rate. A prominent part of this is because these carcinomas are refractory to chemotherapies, such as etoposide or cisplatin, making effective treatment almost impossible. Here, we report that elevated expression of the RAGE variant-V in SCLC promotes homology-directed DNA DSBs repair when challenged with anti-cancer drugs. This variant exclusively localizes to the nucleus, interacts with members of the double-strand break (DSB) repair machinery and thus promotes the recruitment of DSBs repair factors at the site of damage. Increased expression of this variant thus, promotes timely DNA repair. Congruently, the tumor cells expressing high levels of variant-V can tolerate chemotherapeutic drug treatment better than the RAGE depleted cells. Our findings reveal a yet undisclosed role of the RAGE variant-V in the homology-directed DNA repair. This variant thus can be a potential target to be considered for future therapeutic approaches in advanced SSLC.

9.
J Pers Med ; 11(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916261

RESUMEN

Colorectal cancer (CRC) shows one of the largest proportions of familial cases among different malignancies, but only 5-10% of all CRC cases are linked to mutations in established predisposition genes. Thus, familial CRC constitutes a promising target for the identification of novel, high- to moderate-penetrance germline variants underlying cancer susceptibility by next generation sequencing. In this study, we performed whole genome sequencing on three members of a family with CRC aggregation. Subsequent integrative in silico analysis using our in-house developed variant prioritization pipeline resulted in the identification of a novel germline missense variant in the SRC gene (V177M), a proto-oncogene highly upregulated in CRC. Functional validation experiments in HT-29 cells showed that introduction of SRCV177M resulted in increased cell proliferation and enhanced protein expression of phospho-SRC (Y419), a potential marker for SRC activity. Upregulation of paxillin, ß-Catenin, and STAT3 mRNA levels, increased levels of phospho-ERK, CREB, and CCND1 proteins and downregulation of the tumor suppressor p53 further proposed the activation of several pathways due to the SRCV177M variant. The findings of our pedigree-based study contribute to the exploration of the genetic background of familial CRC and bring insights into the molecular basis of upregulated SRC activity and downstream pathways in colorectal carcinogenesis.

10.
Front Endocrinol (Lausanne) ; 12: 600682, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692755

RESUMEN

Familial inheritance in non-medullary thyroid cancer (NMTC) is an area that has yet to be adequately explored. Despite evidence suggesting strong familial clustering of non-syndromic NMTC, known variants still account for a very small percentage of the genetic burden. In a recent whole genome sequencing (WGS) study of five families with several NMTCs, we shortlisted promising variants with the help of our in-house developed Familial Cancer Variant Prioritization Pipeline (FCVPPv2). Here, we report potentially disease-causing variants in checkpoint kinase 2 (CHEK2), Ewing sarcoma breakpoint region 1 (EWSR1) and T-lymphoma invasion and metastasis-inducing protein 1 (TIAM1) in one family. Performing WGS on three cases, one probable case and one healthy individual in a family with familial NMTC left us with 112254 variants with a minor allele frequency of less than 0.1%, which was reduced by pedigree-based filtering to 6368. Application of the pipeline led to the prioritization of seven coding and nine non-coding variants from this family. The variant identified in CHEK2, a known tumor suppressor gene involved in DNA damage-induced DNA repair, cell cycle arrest, and apoptosis, has been previously identified as a germline variant in breast and prostate cancer and has been functionally validated by Roeb et al. in a yeast-based assay to have an intermediate effect on protein function. We thus hypothesized that this family may harbor additional disease-causing variants in other functionally related genes. We evaluated two further variants in EWSR1 and TIAM1 with promising in silico results and reported interaction in the DNA-damage repair pathway. Hence, we propose a polygenic mode of inheritance in this family. As familial NMTC is considered to be more aggressive than its sporadic counterpart, it is important to identify such susceptibility genes and their associated pathways. In this way, the advancement of personalized medicine in NMTC patients can be fostered. We also wish to reopen the discussion on monogenic vs polygenic inheritance in NMTC and instigate further development in this area of research.


Asunto(s)
Quinasa de Punto de Control 2/genética , Predisposición Genética a la Enfermedad , Proteína EWS de Unión a ARN/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética , Cáncer Papilar Tiroideo/genética , Secuencia de Aminoácidos , Quinasa de Punto de Control 2/química , Quinasa de Punto de Control 2/metabolismo , Femenino , Frecuencia de los Genes , Genoma Humano , Humanos , Italia , Masculino , Linaje , Proteína EWS de Unión a ARN/química , Proteína EWS de Unión a ARN/metabolismo , Alineación de Secuencia , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/química , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Cáncer Papilar Tiroideo/metabolismo , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...