RESUMEN
BACKGROUND: Studies of the molecular mechanisms of nerve regeneration have led to the discovery of several proteins that are induced during successful nerve regeneration. RICH proteins were identified as proteins induced during the regeneration of the optic nerve of teleost fish. These proteins are 2',3'-cyclic nucleotide, 3'-phosphodiesterases that can bind to cellular membranes through a carboxy-terminal membrane localization domain. They interact with the tubulin cytoskeleton and are able to enhance neuronal structural plasticity by promoting the formation of neurite branches. RESULTS: PC12 stable transfectant cells expressing a fusion protein combining a red fluorescent protein with a catalytically inactive mutant version of zebrafish RICH protein were generated. These cells were used as a model to analyze effects of the protein on neuritogenesis. Differentiation experiments showed a 2.9 fold increase in formation of secondary neurites and a 2.4 fold increase in branching points. A 2.2 fold increase in formation of secondary neurites was observed in neurite regeneration assays. CONCLUSIONS: The use of a fluorescent fusion protein facilitated detection of expression levels. Two computer-assisted morphometric analysis methods indicated that the catalytically inactive RICH protein induced the formation of branching points and secondary neurites both during differentiation and neurite regeneration. A procedure based on analysis of random field images provided comparable results to classic neurite tracing methods.
Asunto(s)
Neuritas , Pez Cebra , Animales , Diferenciación Celular , Neuronas , Regeneración NerviosaRESUMEN
The receptor tyrosine kinase Ret plays a critical role in regulating enteric nervous system (ENS) development. Ret is important for proliferation, migration, and survival of enteric progenitor cells (EPCs). Ret also promotes neuronal fate, but its role during neuronal differentiation and in the adult ENS is less well understood. Inactivating RET mutations are associated with ENS diseases, e.g., Hirschsprung Disease, in which distal bowel lacks ENS cells. Zebrafish is an established model system for studying ENS development and modeling human ENS diseases. One advantage of the zebrafish model system is that their embryos are transparent, allowing visualization of developmental phenotypes in live animals. However, we lack tools to monitor Ret expression in live zebrafish. Here, we developed a new BAC transgenic line that expresses GFP under the ret promoter. We find that EPCs and the majority of ENS neurons express ret:GFP during ENS development. In the adult ENS, GFP+ neurons are equally present in females and males. In homozygous mutants of ret and sox10-another important ENS developmental regulator gene-GFP+ ENS cells are absent. In summary, we characterize a ret:GFP transgenic line as a new tool to visualize and study the Ret signaling pathway from early development through adulthood.