Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 41: 101039, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32534258

RESUMEN

OBJECTIVE: Recent evidence indicates that inhibition of prolyl hydroxylase domain (PHD) proteins can exert beneficial effects to improve metabolic abnormalities in mice and humans. However, the underlying mechanisms are not clearly understood. This study was designed to address this question. METHODS: A pan-PHD inhibitor compound was injected into WT and liver-specific hypoxia-inducible factor (HIF)-2α KO mice, after onset of obesity and glucose intolerance, and changes in glucose and glucagon tolerance were measured. Tissue-specific changes in basal glucose flux and insulin sensitivity were also measured by hyperinsulinemic euglycemic clamp studies. Molecular and cellular mechanisms were assessed in normal and type 2 diabetic human hepatocytes, as well as in mouse hepatocytes. RESULTS: Administration of a PHD inhibitor compound (PHDi) after the onset of obesity and insulin resistance improved glycemic control by increasing insulin and decreasing glucagon sensitivity in mice, independent of body weight change. Hyperinsulinemic euglycemic clamp studies revealed that these effects of PHDi treatment were mainly due to decreased basal hepatic glucose output and increased liver insulin sensitivity. Hepatocyte-specific deletion of HIF-2α markedly attenuated these effects of PHDi treatment, showing PHDi effects are HIF-2α dependent. At the molecular level, HIF-2α induced increased Irs2 and cyclic AMP-specific phosphodiesterase gene expression, leading to increased and decreased insulin and glucagon signaling, respectively. These effects of PHDi treatment were conserved in human and mouse hepatocytes. CONCLUSIONS: Our results elucidate unknown mechanisms for how PHD inhibition improves glycemic control through HIF-2α-dependent regulation of hepatic insulin and glucagon sensitivity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Insulina/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Glucagón/metabolismo , Glucosa/metabolismo , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/metabolismo , Transducción de Señal
2.
Comput Struct Biotechnol J ; 18: 464-481, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180905

RESUMEN

Obesity is characterized by a state of chronic, unresolved inflammation in insulin-targeted tissues. Obesity-induced inflammation causes accumulation of proinflammatory macrophages in adipose tissue and liver. Proinflammatory cytokines released from tissue macrophages inhibits insulin sensitivity. Obesity also leads to inflammation-induced endoplasmic reticulum (ER) stress and insulin resistance. In this scenario, based on the data (specifically patterns) generated by our in vivo experiments on both diet-induced obese (DIO) and normal chow diet (NCD) mice, we developed an in silico state space model to integrate ER stress and insulin signaling pathways. Computational results successfully followed the experimental results for both DIO and NCD conditions. Chromogranin A (CgA) peptide catestatin (CST: hCgA 352 - 372 ) improves obesity-induced hepatic insulin resistance by reducing inflammation and inhibiting proinflammatory macrophage infiltration. We reasoned that the anti-inflammatory effects of CST would alleviate ER stress. CST decreased obesity-induced ER dilation in hepatocytes and macrophages. On application of Proportional-Integral-Derivative (PID) controllers on the in silico model, we checked whether the reduction of phosphorylated PERK resulting in attenuation of ER stress, resembling CST effect, could enhance insulin sensitivity. The simulation results clearly pointed out that CST not only decreased ER stress but also enhanced insulin sensitivity in mammalian cells. In vivo experiment validated the simulation results by depicting that CST caused decrease in phosphorylation of UPR signaling molecules and increased phosphorylation of insulin signaling molecules. Besides simulation results predicted that enhancement of AKT phosphorylation helps in both overcoming ER stress and achieving insulin sensitivity. These effects of CST were verified in hepatocyte culture model.

3.
J Clin Invest ; 129(10): 4477-4491, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31393851

RESUMEN

Serine rich splicing factor 3 (SRSF3) plays a critical role in liver function and its loss promotes chronic liver damage and regeneration. As a consequence, genetic deletion of SRSF3 in hepatocytes caused progressive liver disease and ultimately led to hepatocellular carcinoma. Here we show that SRSF3 is decreased in human liver samples with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), or cirrhosis that was associated with alterations in RNA splicing of known SRSF3 target genes. Hepatic SRSF3 expression was similarly decreased and RNA splicing dysregulated in mouse models of NAFLD and NASH. We showed that palmitic acid-induced oxidative stress caused conjugation of the ubiquitin like NEDD8 protein to SRSF3 and proteasome mediated degradation. SRSF3 was selectively neddylated at lysine11 and mutation of this residue (SRSF3-K11R) was sufficient to prevent both SRSF3 degradation and alterations in RNA splicing. Finally prevention of SRSF3 degradation in vivo partially protected mice from hepatic steatosis, fibrosis and inflammation. These results highlight a neddylation-dependent mechanism regulating gene expression in the liver that is disrupted in early metabolic liver disease and may contribute to the progression to NASH, cirrhosis and ultimately hepatocellular carcinoma.


Asunto(s)
Hepatocitos/metabolismo , Cirrosis Hepática Experimental/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteolisis , Empalme del ARN , Factores de Empalme Serina-Arginina/metabolismo , Animales , Hepatocitos/patología , Hígado/patología , Cirrosis Hepática Experimental/patología , Ratones , Proteína NEDD8/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Procesamiento Proteico-Postraduccional
4.
Cell Tissue Res ; 376(1): 51-70, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30467710

RESUMEN

We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 µM) and PACAP (0.1 µM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 µM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.


Asunto(s)
Catecolaminas/metabolismo , Cromogranina A/fisiología , Cromograninas/metabolismo , Nicotina/farmacología , Fragmentos de Péptidos/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Animales , Cromogranina A/farmacología , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Humanos , Norepinefrina/metabolismo , Células PC12 , Fragmentos de Péptidos/farmacología , Ratas , Proteínas de Secreción de la Vesícula Seminal/metabolismo , Transducción de Señal/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
5.
J Clin Invest ; 128(4): 1458-1470, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29504946

RESUMEN

We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and ß cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased ß cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered ß cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin-sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.


Asunto(s)
Glucemia/metabolismo , Quimiocina CX3CL1/farmacología , Fragmentos Fc de Inmunoglobulinas/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Animales , Glucemia/genética , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Quimiocina CX3CL1/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Fragmentos Fc de Inmunoglobulinas/genética , Secreción de Insulina/genética , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Proteínas Recombinantes de Fusión/genética
6.
Diabetes ; 67(5): 841-848, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29432123

RESUMEN

The activation of Kupffer cells (KCs) and monocyte-derived recruited macrophages (McMΦs) in the liver contributes to obesity-induced insulin resistance and type 2 diabetes. Mice with diet-induced obesity (DIO mice) treated with chromogranin A peptide catestatin (CST) showed several positive results. These included decreased hepatic/plasma lipids and plasma insulin, diminished expression of gluconeogenic genes, attenuated expression of proinflammatory genes, increased expression of anti-inflammatory genes in McMΦs, and inhibition of the infiltration of McMΦs resulting in improvement of insulin sensitivity. Systemic CST knockout (CST-KO) mice on normal chow diet (NCD) ate more food, gained weight, and displayed elevated blood glucose and insulin levels. Supplementation of CST normalized glucose and insulin levels. To verify that the CST deficiency caused macrophages to be very proinflammatory in CST-KO NCD mice and produced glucose intolerance, we tested the effects of (sorted with FACS) F4/80+Ly6C- cells (representing KCs) and F4/80-Ly6C+ cells (representing McMΦs) on hepatic glucose production (HGP). Both basal HGP and glucagon-induced HGP were markedly increased in hepatocytes cocultured with KCs and McMΦs from NCD-fed CST-KO mice, and the effect was abrogated upon pretreatment of CST-KO macrophages with CST. Thus, we provide a novel mechanism of HGP suppression through CST-mediated inhibition of macrophage infiltration and function.


Asunto(s)
Cromogranina A/farmacología , Glucosa/metabolismo , Resistencia a la Insulina , Macrófagos del Hígado/efectos de los fármacos , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Obesidad/metabolismo , Fragmentos de Péptidos/farmacología , Animales , Cromogranina A/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Glucagón/farmacología , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Hormonas/farmacología , Inflamación/inmunología , Insulina/metabolismo , Macrófagos del Hígado/inmunología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Obesidad/inmunología , Fragmentos de Péptidos/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-28439258

RESUMEN

The heart possesses a remarkable inherent capability to adapt itself to a wide array of genetic and extrinsic factors to maintain contractile function. Failure to sustain its compensatory responses results in cardiac dysfunction, leading to cardiomyopathy. Diabetic cardiomyopathy (DCM) is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction in the absence of hypertension and coronary artery disease. Changes in substrate metabolism, oxidative stress, endoplasmic reticulum stress, formation of extracellular matrix proteins, and advanced glycation end products constitute the early stage in DCM. These early events are followed by steatosis (accumulation of lipid droplets) in cardiomyocytes, which is followed by apoptosis, changes in immune responses with a consequent increase in fibrosis, remodeling of cardiomyocytes, and the resultant decrease in cardiac function. The heart is an omnivore, metabolically flexible, and consumes the highest amount of ATP in the body. Altered myocardial substrate and energy metabolism initiate the development of DCM. Diabetic hearts shift away from the utilization of glucose, rely almost completely on fatty acids (FAs) as the energy source, and become metabolically inflexible. Oxidation of FAs is metabolically inefficient as it consumes more energy. In addition to metabolic inflexibility and energy inefficiency, the diabetic heart suffers from impaired calcium handling with consequent alteration of relaxation-contraction dynamics leading to diastolic and systolic dysfunction. Sarcoplasmic reticulum (SR) plays a key role in excitation-contraction coupling as Ca2+ is transported into the SR by the SERCA2a (sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a) during cardiac relaxation. Diabetic cardiomyocytes display decreased SERCA2a activity and leaky Ca2+ release channel resulting in reduced SR calcium load. The diabetic heart also suffers from marked downregulation of novel cardioprotective microRNAs (miRNAs) discovered recently. Since immune responses and substrate energy metabolism are critically altered in diabetes, the present review will focus on immunometabolism and miRNAs.

8.
Cell Tissue Res ; 368(3): 487-501, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28220294

RESUMEN

Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In ß-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in ß-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO ß-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient ß-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of ß-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.


Asunto(s)
Cromogranina A/fisiología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Dinámicas Mitocondriales , Animales , Calreticulina/metabolismo , Diferenciación Celular , Cromogranina A/deficiencia , Cromogranina A/metabolismo , Exocitosis , Regulación de la Expresión Génica , Glucosa/metabolismo , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales/genética , Fragmentos de Péptidos/metabolismo , Vesículas Secretoras
9.
Artículo en Inglés | MEDLINE | ID: mdl-28228748

RESUMEN

Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets.

10.
J Endocrinol ; 232(2): 137-153, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27799464

RESUMEN

Chromogranin A (CgA) is widely expressed in endocrine and neuroendocrine tissues as well as in the central nervous system. We observed CgA expression (mRNA and protein) in the gastrocnemius (GAS) muscle and found that performance of CgA-deficient Chga-KO mice in treadmill exercise was impaired. Supplementation with CgA in Chga-KO mice restored exercise ability suggesting a novel role for endogenous CgA in skeletal muscle function. Chga-KO mice display (i) lack of exercise-induced stimulation of pAKT, pTBC1D1 and phospho-p38 kinase signaling, (ii) loss of GAS muscle mass, (iii) extensive formation of tubular aggregates (TA), (iv) disorganized cristae architecture in mitochondria, (v) increased expression of the inflammatory cytokines Tnfα, Il6 and Ifnγ, and fibrosis. The impaired maximum running speed and endurance in the treadmill exercise in Chga-KO mice correlated with decreased glucose uptake and glycolysis, defects in glucose oxidation and decreased mitochondrial cytochrome C oxidase activity. The lack of adaptation to endurance training correlated with the lack of stimulation of p38MAPK that is known to mediate the response to tissue damage. As CgA sorts proteins to the regulated secretory pathway, we speculate that lack of CgA could cause misfolding of membrane proteins inducing aggregation of sarcoplasmic reticulum (SR) membranes and formation of tubular aggregates that is observed in Chga-KO mice. In conclusion, CgA deficiency renders the muscle energy deficient, impairs performance in treadmill exercise and prevents regeneration after exercise-induced tissue damage.


Asunto(s)
Cromogranina A/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Cromogranina A/genética , Cromogranina A/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Glucosa/metabolismo , Glucólisis/fisiología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Cell Tissue Res ; 363(3): 693-712, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26572539

RESUMEN

Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30-40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100-200 nm) than in WT mice (200-350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.


Asunto(s)
Catecolaminas/metabolismo , Gránulos Cromafines/metabolismo , Cromogranina A/deficiencia , Metabolismo Energético , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Animales , Western Blotting , Gránulos Cromafines/efectos de los fármacos , Gránulos Cromafines/ultraestructura , Cromogranina A/metabolismo , Dopamina/metabolismo , Endocitosis/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Metabolismo Energético/efectos de los fármacos , Epinefrina/metabolismo , Exocitosis/efectos de los fármacos , Glucosa/metabolismo , Glucógeno/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Humanos , Insulina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Norepinefrina/metabolismo , Nervios Esplácnicos/efectos de los fármacos , Nervios Esplácnicos/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
13.
Diabetes ; 64(1): 104-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25048197

RESUMEN

Chromogranin A knockout (Chga-KO) mice exhibit enhanced insulin sensitivity despite obesity. Here, we probed the role of the chromogranin A-derived peptide pancreastatin (PST: CHGA(273-301)) by investigating the effect of diet-induced obesity (DIO) on insulin sensitivity of these mice. We found that on a high-fat diet (HFD), Chga-KO mice (KO-DIO) remain more insulin sensitive than wild-type DIO (WT-DIO) mice. Concomitant with this phenotype is enhanced Akt and AMPK signaling in muscle and white adipose tissue (WAT) as well as increased FoxO1 phosphorylation and expression of mature Srebp-1c in liver and downregulation of the hepatic gluconeogenic genes, Pepck and G6pase. KO-DIO mice also exhibited downregulation of cytokines and proinflammatory genes and upregulation of anti-inflammatory genes in WAT, and peritoneal macrophages from KO mice displayed similarly reduced proinflammatory gene expression. The insulin-sensitive, anti-inflammatory phenotype of KO-DIO mice is masked by supplementing PST. Conversely, a PST variant peptide PSTv1 (PST-NΔ3: CHGA(276-301)), lacking PST activity, simulated the KO phenotype by sensitizing WT-DIO mice to insulin. In summary, the reduced inflammation due to PST deficiency prevented the development of insulin resistance in KO-DIO mice. Thus, obesity manifests insulin resistance only in the presence of PST, and in its absence obesity is dissociated from insulin resistance.


Asunto(s)
Cromogranina A/inmunología , Obesidad/inmunología , Obesidad/metabolismo , Hormonas Pancreáticas/farmacología , Paniculitis/inmunología , Transducción de Señal/inmunología , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Quimiotaxis/inmunología , Cromogranina A/genética , Cromogranina A/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/inmunología , Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina/inmunología , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/tratamiento farmacológico , Hormonas Pancreáticas/inmunología , Hormonas Pancreáticas/metabolismo , Paniculitis/tratamiento farmacológico , Paniculitis/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/inmunología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
14.
Endocrinology ; 155(10): 3793-805, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25051446

RESUMEN

Cigarette smoking causes insulin resistance. However, nicotine induces anti-inflammation and improves glucose tolerance in insulin-resistant animal models. Here, we determined the effects of nicotine on glucose metabolism in insulin-sensitive C57BL/J6 mice. Acute nicotine administration (30 min) caused fasting hyperglycemia and lowered insulin sensitivity acutely, which depended on the activation of nicotinic-acetylcholine receptors (nAChRs) and correlated with increased catecholamine secretion, nitric oxide (NO) production, and glycogenolysis. Chlorisondamine, an inhibitor of nAChRs, reduced acute nicotine-induced hyperglycemia. qRT-PCR analysis revealed that the liver and muscle express predominantly ß4 > α10 > α3 > α7 and ß4 > α10 > ß1 > α1 mRNA for nAChR subunits respectively, whereas the adrenal gland expresses ß4 > α3 > α7 > α10 mRNA. Chronic nicotine treatment significantly suppressed expression of α3-nAChR (predominant peripheral α-subunit) in liver. Whereas acute nicotine treatment raised plasma norepinephrine (NE) and epinephrine (Epi) levels, chronic nicotine exposure raised only Epi. Acute nicotine treatment raised both basal and glucose-stimulated insulin secretion (GSIS). After chronic nicotine treatment, basal insulin level was elevated, but GSIS after acute saline or nicotine treatment was blunted. Chronic nicotine exposure caused an increased buildup of NO in plasma and liver, leading to decreased glycogen storage, along with a concomitant suppression of Pepck and G6Pase mRNA, thus preventing hyperglycemia. The insulin-sensitizing effect of chronic nicotine was independent of weight loss. Chronic nicotine treatment enhanced PI-3-kinase activities and increased Akt and glycogen synthase kinase (GSK)-3ß phosphorylation in an nAChR-dependent manner coupled with decreased cAMP response element-binding protein (CREB) phosphorylation. The latter effects caused suppression of Pepck and G6Pase gene expression. Thus, nicotine causes both insulin resistance and insulin sensitivity depending on the duration of the treatment.


Asunto(s)
Glucemia/metabolismo , Hiperglucemia/inducido químicamente , Resistencia a la Insulina , Nicotina/farmacología , Receptores Nicotínicos/fisiología , Animales , Células Cultivadas , Epinefrina/sangre , Homeostasis/efectos de los fármacos , Homeostasis/genética , Hiperglucemia/genética , Hiperglucemia/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Norepinefrina/sangre , Factores de Tiempo
15.
Adv Pharmacol ; 68: 93-113, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24054141

RESUMEN

Catecholamines (CAs) and granin peptides are costored in dense-core vesicles within the chromaffin cells of the adrenal medulla and in other endocrine organs and neurons. Granins play a major functional and structural role in chromaffin cells but are ubiquitous proteins, which are present also in secretory cells of the nervous, endocrine, and immune systems, where they regulate a number of cellular functions. Furthermore, recent studies also demonstrate that granin-derived peptides can functionally interact with CA to modulate key physiological functions such as lipolysis and blood pressure. In this chapter, we will provide a brief update on the interaction between CA and granins at the cellular and organ levels. We will first discuss recent data on the regulation of exocytosis of CA and peptides from the chromaffin cells by the sympathetic nervous system with a specific reference to the prominent role played by splanchnic nerve-derived pituitary adenylate cyclase-activating peptide (PACAP). Secondly, we will discuss the role of granins in the storage and regulation of exocytosis in large dense-core vesicles. Finally, we will provide an up-to-date review of the roles played by two granin-derived peptides, the chromogranin A-derived peptide catestatin and the VGF-derived peptide TLQP-21, on lipolysis and obesity. In conclusion, the knowledge gathered from recent findings on the role played by proteins/peptides in the sympathetic/target cell synapses, discussed in this chapter, would contribute to and provide novel mechanistic support for an increased appreciation of the physiological role of CA in human pathophysiology.


Asunto(s)
Tejido Adiposo/metabolismo , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Cromograninas/metabolismo , Animales , Cromogranina A/fisiología , Humanos , Lipólisis , Neuropéptidos/fisiología , Fragmentos de Péptidos/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Sistema Nervioso Simpático/fisiología
16.
J Biol Chem ; 287(27): 23141-51, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22535963

RESUMEN

Chromogranin A knock-out (Chga-KO) mice display increased adiposity despite high levels of circulating catecholamines and leptin. Consistent with diet-induced obese mice, desensitization of leptin receptors caused by hyperleptinemia is believed to contribute to the obese phenotype of these KO mice. In contrast, obesity in ob/ob mice is caused by leptin deficiency. To characterize the metabolic phenotype, Chga-KO mice were treated with the CHGA-derived peptide catestatin (CST) that is deficient in these mice. CST treatment reduced fat depot size and increased lipolysis and fatty acid oxidation. In liver, CST enhanced oxidation of fatty acids as well as their assimilation into lipids, effects that are attributable to the up-regulation of genes promoting fatty acid oxidation (Cpt1α, Pparα, Acox, and Ucp2) and incorporation into lipids (Gpat and CD36). CST did not affect basal or isoproterenol-stimulated cAMP production in adipocytes but inhibited phospholipase C activation by the α-adrenergic receptor (AR) agonist phenylephrine, suggesting inhibition of α-AR signaling by CST. Indeed, CST mimicked the lipolytic effect of the α-AR blocker phentolamine on adipocytes. Moreover, CST reversed the hyperleptinemia of Chga-KO mice and improved leptin signaling as determined by phosphorylation of AMPK and Stat3. CST also improved peripheral leptin sensitivity in diet-induced obese mice. In ob/ob mice, CST enhanced leptin-induced signaling in adipose tissue. In conclusion, our results implicate CST in a novel pathway that promotes lipolysis and fatty acid oxidation by blocking α-AR signaling as well as by enhancing leptin receptor signaling.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Cromogranina A/farmacología , Leptina/metabolismo , Obesidad/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Receptores Adrenérgicos alfa/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Fármacos Antiobesidad/metabolismo , Catecolaminas/metabolismo , Cromogranina A/genética , Cromogranina A/metabolismo , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Lipólisis/efectos de los fármacos , Lipólisis/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Fragmentos de Péptidos/metabolismo , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
17.
Cell Metab ; 6(5): 386-97, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17983584

RESUMEN

Obesity-induced insulin resistance is a major factor in the etiology of type 2 diabetes, and Jun kinases (JNKs) are key negative regulators of insulin sensitivity in the obese state. Activation of JNKs (mainly JNK1) in insulin target cells results in phosphorylation of insulin receptor substrates (IRSs) at serine and threonine residues that inhibit insulin signaling. JNK1 activation is also required for accumulation of visceral fat. Here we used reciprocal adoptive transfer experiments to determine whether JNK1 in myeloid cells, such as macrophages, also contributes to insulin resistance and central adiposity. Our results show that deletion of Jnk1 in the nonhematopoietic compartment protects mice from high-fat diet (HFD)-induced insulin resistance, in part through decreased adiposity. By contrast, Jnk1 removal from hematopoietic cells has no effect on adiposity but confers protection against HFD-induced insulin resistance by decreasing obesity-induced inflammation.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Grasas de la Dieta/administración & dosificación , Metabolismo Energético , Citometría de Flujo , Células Madre Hematopoyéticas/enzimología , Inflamación/inducido químicamente , Inflamación/fisiopatología , Resistencia a la Insulina , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Obesidad/inducido químicamente , Obesidad/metabolismo , Obesidad/fisiopatología , Palmitatos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
18.
Diabetes ; 55(8): 2277-85, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16873691

RESUMEN

Increased accumulation of fatty acids and their derivatives can impair insulin-stimulated glucose disposal by skeletal muscle. To characterize the nature of the defects in lipid metabolism and to evaluate the effects of thiazolidinedione treatment, we analyzed the levels of triacylglycerol, long-chain fatty acyl-coA, malonyl-CoA, fatty acid oxidation, AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), malonyl-CoA decarboxylase, and fatty acid transport proteins in muscle biopsies from nondiabetic lean, obese, and type 2 subjects before and after an euglycemic-hyperinsulinemic clamp as well as pre-and post-3-month rosiglitazone treatment. We observed that low AMPK and high ACC activities resulted in elevation of malonyl-CoA levels and lower fatty acid oxidation rates. These conditions, along with the basal higher expression levels of fatty acid transporters, led accumulation of long-chain fatty acyl-coA and triacylglycerol in insulin-resistant muscle. During the insulin infusion, muscle fatty acid oxidation was reduced to a greater extent in the lean compared with the insulin-resistant subjects. In contrast, isolated muscle mitochondria from the type 2 subjects exhibited a greater rate of fatty acid oxidation compared with the lean group. All of these abnormalities in the type 2 diabetic group were reversed by rosiglitazone treatment. In conclusion, these studies have shown that elevated malonyl-CoA levels and decreased fatty acid oxidation are key abnormalities in insulin-resistant muscle, and, in type 2 diabetic patients, thiazolidinedione treatment can reverse these abnormalities.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Lípidos/biosíntesis , Malonil Coenzima A/análisis , Obesidad/metabolismo , Tiazolidinedionas/uso terapéutico , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/análisis , Acilcoenzima A/análisis , Adulto , Carboxiliasas/análisis , Proteínas de Transporte de Ácidos Grasos/análisis , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Complejos Multienzimáticos/análisis , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/química , Oxidación-Reducción , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/metabolismo , Rosiglitazona , Triglicéridos/análisis
19.
Diabetes ; 54(8): 2351-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16046301

RESUMEN

Insulin resistance is predominantly characterized by decreased insulin-stimulated glucose uptake into skeletal muscle. In the current study, we have assessed various aspects of the phosphatidylinositol (PI) 3-kinase pathway in skeletal muscle biopsies obtained from normal, obese nondiabetic, and type 2 diabetic subjects, before and after a 5-h insulin infusion. We found a highly significant inverse correlation between in vivo insulin sensitivity (as measured by the glucose infusion rate) and increased protein expression of p85/55/50, protein kinase C (PKC)-theta activity, levels of pSer307 insulin receptor substrate (IRS)-1 and p-Jun NH2-terminal kinase (JNK)-1, and myosin heavy chain IIx fibers. Increased basal phosphorylation of Ser307 IRS-1 in the obese and type 2 diabetic subjects corresponds with decrease in insulin-stimulated IRS-1 tyrosine phosphorylation, PI 3-kinase activity, and insulin-induced activation of Akt and, more prominently, PKC-zeta/lambda. In summary, increased expression of the PI 3-kinase adaptor subunits p85/55/50, as well as increased activity of the proinflammatory kinases JNK-1, PKC-theta, and, to a lesser extent, inhibitor of kappaB kinase-beta, are associated with increased basal Ser307 IRS-1 phosphorylation and decreased PI 3-kinase activity and may follow a common pathway to attenuate in vivo insulin sensitivity in insulin-resistant subjects. These findings demonstrate interacting mechanisms that can lead to impaired insulin-stimulated PI 3-kinase activity in skeletal muscle from obese and type 2 diabetic subjects.


Asunto(s)
Resistencia a la Insulina , Músculo Esquelético/enzimología , Fosfatidilinositol 3-Quinasas/análisis , Fosfatidilinositol 3-Quinasas/metabolismo , Subunidades de Proteína/análisis , Adulto , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/patología , Activación Enzimática , Glucólisis , Humanos , Inflamación/enzimología , Proteínas Sustrato del Receptor de Insulina , Isoenzimas/metabolismo , Modelos Lineales , Persona de Mediana Edad , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Obesidad/enzimología , Obesidad/patología , Fosfoproteínas/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Am J Physiol Endocrinol Metab ; 289(6): E1015-22, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16030065

RESUMEN

We show that Topiramate (TPM) treatment normalizes whole body insulin sensitivity in high-fat diet (HFD)-fed male Wistar rats. Thus drug treatment markedly lowered glucose and insulin levels during glucose tolerance tests and caused increased insulin sensitization in adipose and muscle tissues as assessed by euglycemic clamp studies. The insulin-stimulated glucose disposal rate increased twofold (indicating enhanced muscle insulin sensitivity), and suppression of circulating FFAs increased by 200 to 300%, consistent with increased adipose tissue insulin sensitivity. There were no effects of TPM on hepatic insulin sensitivity in these TPM-treated HFD-fed rats. In addition, TPM administration resulted in a three- to fourfold increase in circulating levels of total and high-molecular-weight (HMW) adiponectin (Acrp30). Western blot analysis revealed normal AMPK (Thr(172)) phosphorylation in liver with a twofold increased phospho-AMPK in skeletal muscle in TPM-treated rats. In conclusion, 1) TPM treatment prevents overall insulin resistance in HFD male Wistar rats; 2) drug treatment improved insulin sensitivity in skeletal muscle and adipose tissue associated with enhanced AMPK phosphorylation; and 3) the tissue "specific" effects are associated with increased serum levels of adiponectin, particularly the HMW component.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Grasas de la Dieta/administración & dosificación , Fructosa/análogos & derivados , Insulina/farmacología , Músculo Esquelético/efectos de los fármacos , Proteínas Quinasas Activadas por AMP , Adiponectina/sangre , Adiponectina/metabolismo , Tejido Adiposo/efectos de los fármacos , Animales , Glucemia/análisis , Ácidos Grasos no Esterificados/sangre , Fructosa/administración & dosificación , Técnica de Clampeo de la Glucosa , Insulina/sangre , Resistencia a la Insulina , Hígado/enzimología , Masculino , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Wistar , Topiramato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...