Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ophthalmol Sci ; 4(5): 100522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881611

RESUMEN

Objective: The objective of this study was to develop a rapid and accurate clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based molecular diagnostic assay (Rapid Identification of Mycoses using CRISPR, RID-MyC assay) to detect fungal nucleic acids and to compare it with existing conventional mycologic methods for the diagnosis of fungal keratitis (FK). Design: This study was structured as a development and validation study focusing on the creation and assessment of the RID-MyC assay as a novel diagnostic modality for FK. Subjects: Participants comprised 142 individuals presenting with suspected microbial keratitis at 3 tertiary care institutions in South India. Methods: The RID-MyC assay utilized recombinase polymerase amplification targeting the 18S ribosomal RNA gene for isothermal amplification, followed by a CRISPR/Cas12a reaction. This was benchmarked against microscopy, culture, and polymerase chain reaction for the diagnosis of FK. Main Outcome Measures: The primary outcome measures focused on the analytical sensitivity and specificity of the RID-MyC assay in detecting fungal nucleic acids. Secondary outcomes measured the assay's diagnostic sensitivity and specificity for FK, including its concordance with conventional diagnostic methods. Results: The RID-MyC assay exhibited a detection limit ranging from 13.3 to 16.6 genomic copies across 4 common fungal species. In patients with microbial keratitis, the RID-MyC assay showed substantial agreement with microscopy (kappa = 0.714) and fair agreement with culture (kappa = 0.399). The assay demonstrated a sensitivity of 93.27% (95% confidence interval [CI], 86.62%-97.25%) and a specificity of 89.47% (95% CI, 66.86%-98.70%) for FK diagnosis, with a median diagnostic time of 50 minutes (range, 35-124 minutes). Conclusions: The RID-MyC assay, utilizing CRISPR-Cas12a technology, offers high diagnostic accuracy for FK. Its potential for point-of-care use could expedite and enhance the precision of fungal diagnostics, presenting a promising solution to current diagnostic challenges. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Nat Commun ; 12(1): 6207, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707113

RESUMEN

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.


Asunto(s)
Daño del ADN , Nucleótidos Cíclicos/metabolismo , Transducción de Señal , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Fosforilación , Poli ADP Ribosilación , Proteínas Serina-Treonina Quinasas/metabolismo , Reparación del ADN por Recombinación , Anémonas de Mar/genética , Anémonas de Mar/metabolismo
3.
Sci Adv ; 7(40): eabj3658, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34586848

RESUMEN

Long interspersed nuclear element-1 (L1)­mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA­induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA­induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.

4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526699

RESUMEN

Alu retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of Alu RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether Alu cDNA is synthesized independently of genomic integration is unknown. Alu RNA promotes retinal pigmented epithelium (RPE) death in geographic atrophy, an untreatable type of age-related macular degeneration. We report that Alu RNA-induced RPE degeneration is mediated via cytoplasmic L1-reverse-transcribed Alu cDNA independently of retrotransposition. Alu RNA did not induce cDNA production or RPE degeneration in L1-inhibited animals or human cells. Alu reverse transcription can be initiated in the cytoplasm via self-priming of Alu RNA. In four health insurance databases, use of nucleoside RT inhibitors was associated with reduced risk of developing atrophic macular degeneration (pooled adjusted hazard ratio, 0.616; 95% confidence interval, 0.493-0.770), thus identifying inhibitors of this Alu replication cycle shunt as potential therapies for a major cause of blindness.


Asunto(s)
Elementos Alu/genética , Elementos de Nucleótido Esparcido Largo/genética , Degeneración Macular/genética , Pigmentos Retinianos/metabolismo , Animales , Citoplasma/genética , ADN Complementario/genética , Epitelio/metabolismo , Epitelio/patología , Humanos , Degeneración Macular/patología , Pigmentos Retinianos/biosíntesis , Retroelementos/genética , Transcripción Reversa/genética
5.
Clin Rheumatol ; 37(5): 1395-1399, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28914380

RESUMEN

The goals of this study were to determine if secretory sphingomyelinase (S-SMase) activity is elevated in patients with rheumatoid arthritis (RA) compared to control subjects and to examine the relationships of S-SMase activity with functional status, quality of life, and RA disease activity measurements. We collected data on 33 patients who were diagnosed with RA and 17 non-RA controls who were comparable in terms of age, sex, and race. Demographic, clinical data and self-reported measures of fatigue, pain, and physical function were obtained directly from patients and controls. RA patients also completed quantitative joint assessment using a 28-joint count and functional status and quality of life assessment using the Modified Health Assessment Questionnaire (MHAQ). Archived serum samples were used to analyze retrospectively serum S-SMase activity in patients and controls. The mean serum S-SMase activity was 1.4-fold higher in patients with RA (RA 2.8 ± 1.0 nmol/ml/h vs. controls 2.0 ± 0.8 nmol/ml/h; p = 0.014). Spearman's rho correlations between S-SMase activity and oxidant activity, markers of inflammation and endothelial activation with the exception of P-selectin (rho = 0.40, p = 0.034), measures of disease activity, functional status, and quality of life were not statistically significant in patients with RA. We confirmed that S-SMase activity is higher among RA patients compared to controls, as in other acute and chronic inflammatory diseases. Future studies can build on the present findings to understand more fully the biologic role(s) of S-SMase activity in RA.


Asunto(s)
Artritis Reumatoide/enzimología , Calidad de Vida , Esfingomielina Fosfodiesterasa/metabolismo , Adulto , Anciano , Artritis Reumatoide/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Nat Med ; 24(1): 50-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29176737

RESUMEN

Geographic atrophy is a blinding form of age-related macular degeneration characterized by retinal pigmented epithelium (RPE) death; the RPE also exhibits DICER1 deficiency, resultant accumulation of endogenous Alu-retroelement RNA, and NLRP3-inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human-cell-culture and mouse models is driven by a noncanonical-inflammasome pathway that activates caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-ß production and gasdermin D-dependent interleukin-18 secretion. Decreased DICER1 levels or Alu-RNA accumulation triggers cytosolic escape of mitochondrial DNA, which engages cGAS. Moreover, caspase-4, gasdermin D, interferon-ß, and cGAS levels were elevated in the RPE in human eyes with geographic atrophy. Collectively, these data highlight an unexpected role of cGAS in responding to mobile-element transcripts, reveal cGAS-driven interferon signaling as a conduit for mitochondrial-damage-induced inflammasome activation, expand the immune-sensing repertoire of cGAS and caspase-4 to noninfectious human disease, and identify new potential targets for treatment of a major cause of blindness.


Asunto(s)
Atrofia Geográfica/enzimología , Inflamasomas/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , ARN Helicasas DEAD-box/genética , Humanos , Interferón Tipo I/metabolismo , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Ribonucleasa III/genética , Transducción de Señal
7.
Genetics ; 200(1): 135-47, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25808954

RESUMEN

The Prp43 DExD/H-box protein is required for progression of the biochemically distinct pre-messenger RNA and ribosomal RNA (rRNA) maturation pathways. In Saccharomyces cerevisiae, the Spp382/Ntr1, Sqs1/Pfa1, and Pxr1/Gno1 proteins are implicated as cofactors necessary for Prp43 helicase activation during spliceosome dissociation (Spp382) and rRNA processing (Sqs1 and Pxr1). While otherwise dissimilar in primary sequence, these Prp43-binding proteins each contain a short glycine-rich G-patch motif required for function and thought to act in protein or nucleic acid recognition. Here yeast two-hybrid, domain-swap, and site-directed mutagenesis approaches are used to investigate G-patch domain activity and portability. Our results reveal that the Spp382, Sqs1, and Pxr1 G-patches differ in Prp43 two-hybrid response and in the ability to reconstitute the Spp382 and Pxr1 RNA processing factors. G-patch protein reconstitution did not correlate with the apparent strength of the Prp43 two-hybrid response, suggesting that this domain has function beyond that of a Prp43 tether. Indeed, while critical for Pxr1 activity, the Pxr1 G-patch appears to contribute little to the yeast two-hybrid interaction. Conversely, deletion of the primary Prp43 binding site within Pxr1 (amino acids 102-149) does not impede rRNA processing but affects small nucleolar RNA (snoRNA) biogenesis, resulting in the accumulation of slightly extended forms of select snoRNAs, a phenotype unexpectedly shared by the prp43 loss-of-function mutant. These and related observations reveal differences in how the Spp382, Sqs1, and Pxr1 proteins interact with Prp43 and provide evidence linking G-patch identity with pathway-specific DExD/H-box helicase activity.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Empalme del ARN , ARN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...