Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
PLoS One ; 6(4): e19505, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559335

RESUMEN

Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4) cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81%) of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.


Asunto(s)
Técnicas de Cultivo de Célula , Larva/fisiología , Animales , Axones/metabolismo , Caenorhabditis elegans , Adhesión Celular , Linaje de la Célula , Supervivencia Celular , Ditiotreitol/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/metabolismo , Larva/microbiología , Microtúbulos/metabolismo , Músculos/embriología , Miosinas/metabolismo , Dodecil Sulfato de Sodio/farmacología
3.
Neuron ; 69(2): 258-72, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21262465

RESUMEN

The extent of diversity among bitter-sensing neurons is a fundamental issue in the field of taste. Data are limited and conflicting as to whether bitter neurons are broadly tuned and uniform, resulting in indiscriminate avoidance of bitter stimuli, or diverse, allowing a more discerning evaluation of food sources. We provide a systematic analysis of how bitter taste is encoded by the major taste organ of the Drosophila head, the labellum. Each of 16 bitter compounds is tested physiologically against all 31 taste hairs, revealing responses that are diverse in magnitude and dynamics. Four functional classes of bitter neurons are defined. Four corresponding classes are defined through expression analysis of all 68 gustatory taste receptors. A receptor-to-neuron-to-tastant map is constructed. Misexpression of one receptor confers bitter responses as predicted by the map. These results reveal a degree of complexity that greatly expands the capacity of the system to encode bitter taste.


Asunto(s)
Drosophila melanogaster/fisiología , Neuronas Aferentes/fisiología , Gusto/fisiología , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal , Conducta de Elección , Proteínas de Drosophila/fisiología , Drosophila melanogaster/anatomía & histología , Ligandos , Masculino , Neuronas Aferentes/clasificación , Receptores de Superficie Celular/fisiología , Sensilos/citología , Sensilos/fisiología , Umbral Gustativo/fisiología
4.
Cell Cycle ; 9(23): 4748-65, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21127398

RESUMEN

Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway, which regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/ß-catenin signaling pathway, involving the ß-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIα functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIα in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIα may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/enzimología , Caseína Quinasa Ialfa/fisiología , Proteínas Quinasas/fisiología , Células Madre/enzimología , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caseína Quinasa Ialfa/metabolismo , Diferenciación Celular , División Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células Epidérmicas , Técnicas de Silenciamiento del Gen , Larva/enzimología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
5.
Dev Cell ; 8(2): 287-95, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15691769

RESUMEN

In Caenorhabditis elegans, heterochronic genes constitute a developmental timer that specifies temporal cell fate selection. The heterochronic gene lin-42 is the C. elegans homolog of Drosophila and mammalian period, key regulators of circadian rhythms, which specify changes in behavior and physiology over a 24 hr day/night cycle. We show a role for two other circadian gene homologs, tim-1 and kin-20, in the developmental timer. Along with lin-42, tim-1 and kin-20, the C. elegans homologs of the Drosophila circadian clock genes timeless and doubletime, respectively, are required to maintain late-larval identity and prevent premature expression of adult cell fates. The molecular parallels between circadian and developmental timing pathways suggest the existence of a conserved molecular mechanism that may be used for different types of biological timing.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Quinasa Idelta de la Caseína/genética , Ritmo Circadiano/genética , Genes de Helminto , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Quinasa Idelta de la Caseína/metabolismo , Regulación del Desarrollo de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , MicroARNs , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Interferencia de ARN
6.
Genome Biol ; 6(2): 205, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15693952

RESUMEN

During the formation of animal organs, a single regulatory factor can control the majority of cell-fate decisions, but the mechanisms by which this occurs are poorly understood. One such regulator, the nematode transcription factor PHA-4, functions together with various cis-regulatory elements in target genes to regulate spatial and temporal patterning during development of the pharynx.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Transactivadores/fisiología , Animales , Tipificación del Cuerpo/genética , Modelos Genéticos , Organogénesis/genética , Faringe/embriología , Faringe/metabolismo , Elementos Reguladores de la Transcripción , Transcripción Genética
7.
Bioessays ; 24(2): 119-29, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11835276

RESUMEN

Heterochronic genes control the timing of developmental programs. In C. elegans, two key genes in the heterochronic pathway, lin-4 and let-7, encode small temporally expressed RNAs (stRNAs) that are not translated into protein. These stRNAs exert negative post-transcriptional regulation by binding to complementary sequences in the 3' untranslated regions of their target genes. stRNAs are transcribed as longer precursor RNAs that are processed by the RNase Dicer/DCR-1 and members of the RDE-1/AGO1 family of proteins, which are better known for their roles in RNA interference (RNAi). However, stRNA function appears unrelated to RNAi. Both sequence and temporal regulation of let-7 stRNA is conserved in other animal species suggesting that this is an evolutionarily ancient gene. Indeed, C. elegans, Drosophila and humans encode at least 86 other RNAs with similar structural features to lin-4 and let-7. We postulate that other small non-coding RNAs may function as stRNAs to control temporal identity during development in C. elegans and other organisms.


Asunto(s)
Regiones no Traducidas 3'/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , ARN Nuclear Pequeño/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linaje de la Célula , Endorribonucleasas/genética , Silenciador del Gen/fisiología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Humanos , MicroARNs , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Nuclear Pequeño/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleasa III
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA