Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gels ; 9(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37754443

RESUMEN

Curcumin, a nontoxic and cheap natural medicine, has high therapeutic efficacy for many diseases, including diabetes and cancers. Unfortunately, its exceedingly low water-solubility and rapid degradation in the body severely limit its bioavailability. In this work, we prepare a series of biocompatible poly(vinyl anisole)@nonlinear poly(ethylene glycol) (PVAS@PEG) core-shell nanogels with different PEG gel shell thickness to provide high water solubility, good stability, and controllable sustained release of curcumin. The PVAS nanogel core is designed to attract and store curcumin molecules for high drug loading capacity and the hydrophilic nonlinear PEG gel shell is designed to offer water dispersibility and thermo-responsive drug release. The nanogels prepared are monodispersed in a spherical shape with clear core-shell morphology. The size and shell thickness of the nanogels can be easily controlled by changing the core-shell precursor feeding ratios. The optimized PVAS@PEG nanogels display a high curcumin loading capacity of 38.0 wt%. The nanogels can stabilize curcumin from degradation at pH = 7.4 and release it in response to heat within the physiological temperature range. The nanogels can enter cells effectively and exhibit negligible cytotoxicity to both the B16F10 and HL-7702 cells at a concentration up to 2.3 mg/mL. Such designed PVAS@PEG nanogels have great potential to be used for efficient drug delivery.

2.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902456

RESUMEN

The standard of care for most malignant solid tumors still involves tumor resection followed by chemo- and radiation therapy, hoping to eliminate the residual tumor cells. This strategy has been successful in extending the life of many cancer patients. Still, for primary glioblastoma (GBM), it has not controlled recurrence or increased the life expectancies of patients. Amid such disappointment, attempts to design therapies using the cells in the tumor microenvironment (TME) have gained ground. Such "immunotherapies" have so far overwhelmingly used genetic modifications of Tc cells (Car-T cell therapy) or blocking of proteins (PD-1 or PD-L1) that inhibit Tc-cell-mediated cancer cell elimination. Despite such advances, GBM has remained a "Kiss of Death" for most patients. Although the use of innate immune cells, such as the microglia, macrophages, and natural killer (NK) cells, has been considered in designing therapies for cancers, such attempts have not reached the clinic yet. We have reported a series of preclinical studies highlighting strategies to "re-educate" GBM-associated microglia and macrophages (TAMs) so that they assume a tumoricidal status. Such cells then secrete chemokines to recruit activated, GBM-eliminating NK cells and cause the rescue of 50-60% GBM mice in a syngeneic model of GBM. This review discusses a more fundamental question that most biochemists harbor: "since we are generating mutant cells in our body all the time, why don't we get cancer more often?" The review visits publications addressing this question and discusses some published strategies for re-educating the TAMs to take on the "sentry" role they initially maintained in the absence of cancer.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inmunidad Innata , Microambiente Tumoral , Animales , Ratones , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Inmunoterapia , Macrófagos/metabolismo , Microglía/metabolismo , Microambiente Tumoral/inmunología , Reparación del ADN
3.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35216076

RESUMEN

The neurotransmitter serotonin (5-HT) plays an important role in mood disorders. It has been demonstrated that 5-HT signaling through 5-HT1A receptors (5-HT1A-R) is crucial for early postnatal hippocampal development and later-life behavior. Although this suggests that 5-HT1A-R signaling regulates early brain development, the mechanistic underpinnings of this process have remained unclear. Here we show that stimulation of the 5-HT1A-R at postnatal day 6 (P6) by intrahippocampal infusion of the agonist 8-OH-DPAT (D) causes signaling through protein kinase Cε (PKCε) and extracellular receptor activated kinase ½ (ERK1/2) to boost neuroblast proliferation in the dentate gyrus (DG), as displayed by an increase in bromodeoxy-uridine (BrdU), doublecortin (DCX) double-positive cells. This boost in neuroproliferation was eliminated in mice treated with D in the presence of a 5-HT1A-R antagonist (WAY100635), a selective PKCε inhibitor, or an ERK1/2-kinase (MEK) inhibitor (U0126). It is believed that hippocampal neuro-progenitors undergoing neonatal proliferation subsequently become postmitotic and enter the synaptogenesis phase. Double-staining with antibodies against bromodeoxyuridine (BrdU) and neuronal nuclear protein (NeuN) confirmed that 5-HT1A-R → PKCε → ERK1/2-mediated boosted neuroproliferation at P6 also leads to an increase in BrdU-labeled granular neurons at P36. This 5-HT1A-R-mediated increase in mature neurons was unlikely due to suppressed apoptosis, because terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis showed no difference in DNA terminal labeling between vehicle and 8-OH-DPAT-infused mice. Therefore, 5-HT1A-R signaling through PKCε may play an important role in micro-neurogenesis in the DG at P6, following which many of these new-born neuroprogenitors develop into mature neurons.


Asunto(s)
Hipocampo/metabolismo , Neurogénesis/fisiología , Proteína Quinasa C-epsilon/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Transducción de Señal/fisiología , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Bromodesoxiuridina/farmacología , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Giro Dentado/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Agonistas de Receptores de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
4.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34575998

RESUMEN

During the last decade, we have persistently addressed the question, "how can the innate immune system be used as a therapeutic tool to eliminate cancer?" A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent. Intriguingly, the maximum blood concentration of CC in mice never exceeds nanomolar levels. Thus, our results submit that even low, transient levels of curcumin in vivo are enough to cause repolarization of the TAM and recruitment NK cells as well as Tc cells to eliminate the tumor. We have observed this phenomenon in two cancer models, glioblastoma and cervical cancer. Therefore, this approach may yield a general strategy to fight cancer. Our mechanistic studies have so far implicated induction of STAT-1 in this M2→M1 switch, but further studies are needed to understand the involvement of other factors such as the lipid metabolites resolvins in the CC-evoked anticancer pathways.


Asunto(s)
Curcumina/uso terapéutico , Glioblastoma/tratamiento farmacológico , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Femenino , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Ratones , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Óxido Nítrico/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/patología
5.
Mol Reprod Dev ; 88(5): 371-375, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33821543

RESUMEN

Intraflagellar transport 27 (IFT27) is a key regulator for spermiogenesis and male fertility in mice. ATP8a1, a protein involved in the translocation of phosphatidylserine and phosphatidylethanolamine across lipid bilayers, is the strongest binding partner of IFT27. To investigate the role of ATP8a1 in spermatogenesis and male fertility, the global Atp8a1 knockout mice were analyzed. All mutant mice were fertile, and sperm count and motility were comparable to the control mice. Examination of testis and epididymis by hematoxylin and eosin staining did not reveal major histologic defects. These observations demonstrate that ATP8a1 is not a major spermatogenesis regulator. Given that a tissue-specific paralogue of ATP8a1, ATP8a2, is present, further studies with double-knockout models are warranted to delineate any compensatory functions of the two proteins.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Fertilidad/fisiología , Proteínas de Transferencia de Fosfolípidos/fisiología , Espermatogénesis/fisiología , Proteínas de Unión al GTP rab/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Animales , Epidídimo/ultraestructura , Infertilidad Masculina/genética , Masculino , Lípidos de la Membrana/metabolismo , Ratones , Ratones Noqueados , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/deficiencia , Proteínas de Transferencia de Fosfolípidos/genética , Dominios Proteicos , Testículo/ultraestructura
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166048, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33359697

RESUMEN

Fragile X Syndrome (FXS) is an inherited developmental disorder caused by the non-expression of the Fmr1 gene. FXS is associated with abnormal social and anxiety behavior that is more prominent among males. Given that oxytocin (OXT) regulates both social and anxiety behavior, we studied the effect of FXS in the hypothalamic paraventricular nucleus (PVN), the major central source of OXT. We observed a significant suppression of protein kinase C epsilon (PKCε) (34%) in the ventral hippocampal CA1 region of postnatal day-18 (P18) male Fmr1 knockout (KO) mice, which displayed social behavior deficits and hyper-anxiety in adulthood. These mice also displayed a 39% increase in cell surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) at P18 (measured by the surface level of the AMPAR subunit GluR2), thereby indicating excitation of the CA1 neurons. It is known that neuronal activation at CA1 is linked to an inhibition of the PVN neurons. As expected, these mice also displayed a 25% suppression of oxytocin+ (OXT+) cells in the PVN at P20. Stimulating PKCε during postnatal days 6-,14 (P6-14) mice using a selective activator, dicyclopropyl-linoleic acid (DCP-LA), corrected AMPAR externalization in CA1 and suppression of OXT+ cell number in PVN in a PKCε dependent manner. Most notably, neonatal DCP-LA treatment rescued social behavior deficits and hyper-anxiety, displayed by adult (≥P60) male but not female KO mice. Thus, neonatal stimulation of PKCε could be a strategy to correct endophenotypic anomalies during brain development and aberrant adult behavior of the FXS males to the wild-type levels.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Oxitocina/genética , Proteína Quinasa C-epsilon/genética , Receptores AMPA/análisis , Animales , Animales Recién Nacidos , Conducta Animal , Activadores de Enzimas/uso terapéutico , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/patología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Noqueados , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/patología , Receptores AMPA/metabolismo
7.
Biochem Pharmacol ; 176: 113824, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31987852

RESUMEN

Curcumin has been at the center of vigorous research and major debate during the past decade. Inspired by its anti-inflammatory properties, many curcumin-based products are being sold now to manage various forms of arthritis. Parallel preclinical studies have established its role in dissolving beta-amyloid plaques, tau-based neurofibrillary tangles, and also alpha-synuclein-linked protein aggregates typically observed in Parkinson's disease. In cancer research, most cancer cells in culture are eliminated by curcumin at an IC50 of 15-30 µM, whereas the maximum in vivo curcumin concentration achieved in humans is only about 6 µM. Additionally, a decade ago, no improvement over the placebo groups was observed in clinical studies using free curcumin as an anticancer agent. The lack of anticancer efficacy was attributed to its low bioavailability, which results from the low water-solubility and high metabolic rate in vivo. Newer lipid-complexed or antibody-targeted forms have been used and these studies have revealed an exciting property of curcumin, which involves repolarization of the tumor-promoting, tumor-associated microglia/macrophages (TAMs) into a tumoricidal form and recruitment of natural killer cells from the periphery. This review will cover some efforts to explore the effect of appropriately-delivered curcumin to dramatically alter the tumor microenvironment, thereby launching an indirect attack on the tumor cells and the tumor stem cells. Reviewing some aspects of immunotherapy, this article will argue for the use of the innate immune cells in cancer therapy.


Asunto(s)
Curcumina/farmacología , Inmunidad Innata/efectos de los fármacos , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Disponibilidad Biológica , Curcumina/química , Curcumina/farmacocinética , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/inmunología , Macrófagos/inmunología , Microglía/inmunología , Neoplasias/inmunología , Neoplasias/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
8.
Behav Brain Res ; 373: 112062, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31288061

RESUMEN

Anxiety disorders affect nearly twice as many women as men. However, little is known regarding sex-dependent developmental behavioral differences and whether there is an association with later life anxiety disorders. The present study assessed the developmental-behavioral milestones (DBMs) and their relationship with later life anxiety-like behaviors by comparing postnatal ultrasonic vocalizations (USVs) with open field (OF), elevated plus maze (EPM), and light/dark (LD) anxiety test outcomes using the serotonin 1A receptor knockout (KO) mouse model of anxiety. The USVs and DBMs (i.e., grasping, righting, and startle reflexes) were examined on postnatal day 6 (P6), P8, and P10. Adult anxiety-like behaviors were examined on P60 to compare the genotype and sex-dependent differences in anxiety-like behaviors and to correlate them with the USVs. The total number of USVs observed on P8 correlated with later life anxiety-like behaviors in a genotype-, age-, and sex-dependent manner. Interestingly, female KO (KOF) mice exhibited elevated levels of anxiety-like behavior within the OF, EPM, and LD tests. Additionally, an investigation of the USV subtypes, as well as USV sequence structure and repertoire variation, revealed that the KOF mice produced less complex USVs and complex USV-containing sequences on P10. The present study provides an intriguing, predictive "P8/10-USV-to-P60" anxiety-like behavioral model that may prove useful in future characterization, psychopharmacology, and drug rescue studies directed towards sex-specific anxiety treatment.


Asunto(s)
Ansiedad/fisiopatología , Receptor de Serotonina 5-HT1A/metabolismo , Vocalización Animal/fisiología , Factores de Edad , Animales , Ansiedad/genética , Trastornos de Ansiedad/fisiopatología , Biomarcadores , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Receptor de Serotonina 5-HT1A/genética , Factores Sexuales , Ondas Ultrasónicas , Ultrasonido
9.
Front Oncol ; 9: 352, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143704

RESUMEN

Human papilloma virus (HPV)-induced cervical cancer is one of the most frequent cancers in women residing in underdeveloped countries. Natural compounds like polyphenols continue to be of scientific interest as non-toxic effective alternative treatments. Our previous work showed the efficacy of two polyphenols, resveratrol, and pterostilbene on human HeLa cells. Here we explored the in vitro anti-cancer activity and in vivo anti-tumor potential of these two structurally similar compounds on HPV oncogene E6 and E7 positive murine TC1 cells. In vitro analysis confirmed the cytotoxic potential of both resveratrol and pterostilbene compounds with each having a low IC50 value and each showing the ability to downregulate viral oncogene E6. Further in vivo studies on TC1 tumors developing in mice indicated that treatment with either resveratrol or pterostilbene can significantly inhibit tumor development, with both compounds capable of downregulating E6 and VEGF tumor protein levels. Interestingly, the decrease in tumor size in pterostilbene was associated with tumor cell apoptosis, as indicated by an upregulation of activated caspase-3 whereas in resveratrol-treated mice it was accompanied by arrest of cell cycle, as indicated by a downregulation of PCNA. Thus, resveratrol and pterostilbene can serve as potential antineoplastic agents against HPV E6+ tumors and may suppress tumor growth via two different mechanisms.

10.
J Exp Clin Cancer Res ; 37(1): 168, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30041669

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a primary brain tumor with a 5-year survival rate of ≤5%. We have shown earlier that GBM-antibody-linked curcumin (CC) and also phytosomal curcumin (CCP) rescue 50-60% of GBM-bearing mice while repolarizing the tumor-associated microglia/macrophages (TAM) from the tumor-promoting M2-type to the tumoricidal M1-type. However, systemic application of CCP yields only sub-IC50 concentrations of CC in the plasma, which is unlikely to kill GBM cells directly. This study investigates the role of CC-evoked intra-GBM recruitment of activated natural killer (NK) cells in the elimination of GBM and GBM stem cells. METHODS: We have used an immune-competent syngeneic C57BL6 mouse model with the mouse-GBM GL261 cells orthotopically implanted in the brain. Using immunohistochemistry and flow cytometry, we have quantitatively analyzed the role of the intra-GBM-recruited NK cells by (i) injecting (i.p.) the NK1.1 antibody (NK1.1Ab) to temporarily eliminate the NK cells and (ii) blocking NK recruitment by injecting an IL12 antibody (IL12Ab). The treatment cohorts used randomly-chosen GL261-implanted mice and data sets were compared using two-tailed t-test or ANOVA. RESULTS: CCP treatment caused the GBM tumor to acquire M1-type macrophages (50-60% of the TAM) and activated NK cells. The treatment also elicited (a) suppression of the M2-linked tumor-promoting proteins STAT3, ARG1, and IL10, (b) induction of the M1-linked anti-tumor proteins STAT1 and inducible nitric oxide synthase in the TAM, (c) elimination of CD133(+) GBM stem cells, and (d) activation of caspase3 in the GBM cells. Eliminating intra-GBM NK cell recruitment caused a partial reversal of each of these effects. Concomitantly, we observed a CCP-evoked dramatic induction of the chemokine monocyte chemotactic protein-1 (MCP-1) in the TAM. CONCLUSIONS: The recruited NK cells mediate a major part of the CCP-evoked elimination of GBM and GBM stem cells and stabilization of the TAM in the M1-like state. MCP-1 is known to activate peripheral M1-type macrophages to secrete IL12, an activator of NK cells. Based on such observations, we postulate that by binding to peripheral M1-type macrophages and IL12-activated NK cells, the brain-released chemokine MCP-1 causes recruitment of peripheral immune cells into the GBM, thereby causing destruction of the GBM cells and GBM stem cells.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Curcumina/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Animales , Neoplasias Encefálicas/patología , Glioblastoma/patología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Distribución Aleatoria
11.
Cancer Immunol Immunother ; 67(5): 761-774, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29453519

RESUMEN

Our earlier studies reported a unique potentiated combination (TriCurin) of curcumin (C) with two other polyphenols. The TriCurin-associated C displays an IC50 in the low micromolar range for cultured HPV+ TC-1 cells. In contrast, because of rapid degradation in vivo, the TriCurin-associated C reaches only low nano-molar concentrations in the plasma, which are sub-lethal to tumor cells. Yet, injected TriCurin causes a dramatic suppression of tumors in TC-1 cell-implanted mice (TC-1 mice) and xenografts of Head and Neck Squamous Cell Carcinoma (HNSCC) cells in nude/nude mice. Here, we use the TC-1 mice to test our hypothesis that a major part of the anti-tumor activity of TriCurin is evoked by innate and adaptive immune responses. TriCurin injection repolarized arginase1high (ARG1high), IL10high, inducible nitric oxide synthaselow (iNOSlow), IL12low M2-type tumor-associated macrophages (TAM) into ARG1low, IL10low, iNOShigh, and IL12high M1-type TAM in HPV+ tumors. The M1 TAM displayed sharply suppressed STAT3 and induced STAT1 and NF-kB(p65). STAT1 and NF-kB(p65) function synergistically to induce iNOS and IL12 transcription. Neutralizing IL12 signaling with an IL12 antibody abrogated TriCurin-induced intra-tumor entry of activated natural killer (NK) cells and Cytotoxic T lymphocytes (CTL), thereby confirming that IL12 triggers recruitment of NK cells and CTL. These activated NK cells and CTL join the M1 TAM to elicit apoptosis of the E6+ tumor cells. Corroboratively, neutralizing IL12 signaling partially reversed this TriCurin-mediated apoptosis. Thus, injected TriCurin elicits an M2→M1 switch in TAM, accompanied by IL12-dependent intra-tumor recruitment of NK cells and CTL and elimination of cancer cells.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Macrófagos/inmunología , Infecciones por Papillomavirus/complicaciones , Animales , Catequina/administración & dosificación , Catequina/análogos & derivados , Curcumina/administración & dosificación , Femenino , Neoplasias de Cabeza y Cuello/virología , Humanos , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/virología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/virología , Resveratrol/administración & dosificación , Linfocitos T Citotóxicos/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Molecules ; 23(1)2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29346317

RESUMEN

Glioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin) to achieve superior potency against HPV+ tumors than C alone at C:E:R (µM): 32:8:100 (termed 32 µM+ TriCurin). We have now prepared liposomal TriCurin (TrLp) and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM)-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors.


Asunto(s)
Catequina/análogos & derivados , Curcumina/administración & dosificación , Combinación de Medicamentos , Liposomas , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Estilbenos/administración & dosificación , Animales , Biomarcadores de Tumor , Catequina/administración & dosificación , Catequina/química , Catequina/farmacocinética , Línea Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Inmunofenotipificación , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microglía/inmunología , Microglía/metabolismo , Resveratrol , Estilbenos/química , Estilbenos/farmacocinética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Oncotarget ; 8(37): 60904-60916, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28977833

RESUMEN

Curcumin (from curry) (C) is highly potent against cervical cancer cells (CCC), but poor bioavailability has limited its clinical use. Similar natural polyphenols resveratrol (from grapes) (R), and epicatechin gallate (from green tea) (E) also display activity against CCC. By treating CCC (HeLa) with C, E, or R, or combinations of these compounds, we computed combination indices and observed a strong synergism among C, E, and R at the unique molar ratio 4:1:12.5. This combination, named as TriCurin, rapidly down regulated HPV18 E6 and NF-kB expression while concomitantly inducing the tumor suppressor protein p53 in HeLa cells. In the mouse c-Ha-ras and HPV16 E6, E7-expressing TC-1 CCC, both C and TriCurin elicited suppression of E6, induction of both p53 and acetyl-p53 (activated p53), and activation of caspase-3, but the TriCurin-evoked changes were several-fold greater than that produced by curcumin (4.7-fold for E6 inhibition, and 2-fold, 6-fold, and 1.7-fold for the induction of p53, acetyl-p53, and active caspase-3, respectively). Consequently, TriCurin was more potent in killing TC-1 and HeLa cells. Intralesional TriCurin treatment of tumors generated in mice by subcutaneously implanting the TC-1 CCC caused an 80-90% decrease in tumor growth. The ability of C to eliminate HeLa cells was significantly stabilized when delivered as TriCurin than when delivered alone. Topical application of TriCurin dispersed in a cream base afforded efficient transfer of C across the skin. Subcutaneous TriCurin injection yielded no adverse effect in tumor-naïve healthy mice. Thus, TriCurin is a safe and promising therapeutic agent against HPV-associated disease.

14.
Oncotarget ; 8(36): 60025-60035, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28947951

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide with about 600,000 new cases diagnosed in the last year. The incidence of human papillomavirus-positive head and neck squamous cell carcinoma (HPV-positive HNSCC) has rapidly increased over the past 30 years prompting the suggestion that an epidemic may be on the horizon. Therefore, there is a clinical need to develop alternate therapeutic strategies to manage the growing number of HPV-positive HNSCC patients. TriCurin is a composition of three food-derived polyphenols in unique stoichiometric proportions consisting of curcumin from the spice turmeric, resveratrol from red grapes, and epicatechin gallate from green tea. Cell viability, clonogenic survival, and tumorsphere formation were inhibited and significant apoptosis was induced by TriCurin in UMSCC47 and UPCI:SCC090 HPV-positive HNSCC cells. Moreover, TriCurin decreased HPV16E6 and HPV16E7 and increased p53 levels. In a pre-clinical animal model of HPV-positive HNSCC, intra-tumoral injection of TriCurin significantly inhibited tumor growth by 85.5% compared to vehicle group (P < 0.05, n = 7). Our results demonstrate that TriCurin is a potent anti-tumor agent for HPV-positive HNSCC. Further development of TriCurin as a novel anti-cancer therapeutic to manage the HPV-positive HNSCC population is warranted.

15.
ACS Appl Mater Interfaces ; 9(22): 18639-18649, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28485151

RESUMEN

Multifunctional nanocarriers with good biocompatibility, good imaging function, and smart drug delivery ability are crucial for realizing highly efficient imaging-guided chemotherapy in vivo. This paper reports a type of chitosan-carbon dot (CD) hybrid nanogels (CCHNs, ∼65 nm) by integrating pH-sensitive chitosan and fluorescent CDs into a single nanostructure for simultaneous near-infrared (NIR) imaging and NIR/pH dual-responsive drug release to improve therapeutic efficacy. Such CCHNs were synthesized via a nonsolvent-induced colloidal nanoparticle formation of chitosan-CD complexes assisted by ethylenediaminetetraacetic acid (EDTA) molecules in the aqueous phase. The selective cross-linking of chitosan chains in the nanoparticles can immobilize small CDs complexed in the chitosan networks. The resultant CCHNs display high colloidal stability, high loading capacity for doxorubicin (DOX), bright and stable fluorescence from UV to NIR wavelength range, efficient NIR photothermal conversion, and intelligent drug release in response to both NIR light and change in pH. The results from in vitro tests on cell model and in vivo tests on different tissues of animal model indicate that the CCHNs are nontoxic. The DOX-loaded CCHNs can permeate into the implanted tumor on mice and release drug molecules efficiently on site to inhibit tumor growth. The additional photothermal treatments from NIR irradiation can further inhibit the tumor growth, benefited from the effective NIR photothermal conversion of CCHNs. The demonstrated CCHNs manifest a great promise toward multifunctional intelligent nanoplatform for highly efficient imaging-guided cancer therapy with low side effects.


Asunto(s)
Nanopartículas , Animales , Carbono , Quitosano , Doxorrubicina , Ratones , Polietilenglicoles , Polietileneimina
16.
Int J Cancer ; 139(12): 2838-2849, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27543754

RESUMEN

Glioblastoma (GBM) is one of the most pernicious forms of cancer and currently chances of survival from this malady are extremely low. We have used the noninvasive strategy of intranasal (IN) delivery of a glioblastoma-directed adduct of curcumin (CC), CC-CD68Ab, into the brain of mouse GBM GL261-implanted mice to study the effect of CC on tumor remission and on the phenotype of the tumor-associated microglial cells (TAMs). The treatment caused tumor remission in 50% of GL261-implanted GBM mice. A similar rescue rate was also achieved through intraperitoneal infusion of a lipid-encapsulated formulation of CC, Curcumin Phytosome, into the GL261-implanted GBM mice. Most strikingly, both forms of CC elicited a dramatic change in the tumor-associated Iba1+ TAMs, suppressing the tumor-promoting Arginase1high , iNOSlow M2-type TAM population while inducing the Arginase1low , iNOShigh M1-type tumoricidal microglia. Concomitantly, we observed a marked induction and activation of microglial NF-kB and STAT1, which are known to function in coordination to cause induction of iNOS. Therefore, our novel findings indicate that appropriately delivered CC can directly kill GBM cells and also repolarize the TAMs to the tumoricidal M1 state.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Glioblastoma/patología , Microglía/efectos de los fármacos , Microglía/patología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antineoplásicos/administración & dosificación , Arginasa/metabolismo , Biomarcadores , Proteínas de Unión al Calcio , Línea Celular Tumoral , Curcumina/administración & dosificación , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Inmunofenotipificación , Concentración 50 Inhibidora , Masculino , Ratones , Proteínas de Microfilamentos , Microglía/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Transcripción STAT1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Biochim Biophys Acta ; 1862(9): 1755-65, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27287255

RESUMEN

Type IV ATPases are putative aminophospholipid translocases (APLTs), more commonly known as flippases. A pronounced induction of the flippase Atp8a1 was observed in post-mortem tissue homogenates from the hippocampus and temporal lobe of juvenile autistic subjects compared to age-matched controls. In order to simulate the human data, C57BL/6 mice were allowed to develop after intra-hippocampal injection of recombinant lentivirus expressing Atp8a1 at the early developmental stage of postnatal day 6 (P6). Transmission electron microscopy (TEM) analysis of the lentivirus-Atp8a1 treated (Atp8a1+) mice in adulthood revealed fewer and weaker excitatory synapses in the hippocampal CA1 region compared to mice injected with empty virus. Significant inhibition of the Schaffer collateral pathway was observed in the Atp8a1+ mice in paired-pulse recording (PPR) at 20-ms inter-stimulus interval. In the three-chambered sociability test, the Atp8a1+ mice displayed no preference for an encaged stranger mouse over a novel object, which is a characteristic autistic-like behavior. In sharp contrast, Atp8a1 (-/-) mice displayed a preference for a stranger mouse over the novel object, which is characteristic of neurotypical mouse behavior. However, similar to the Atp8a1+ mice, the Atp8a1 (-/-) mice harbored fewer and weaker excitatory synapses in CA1 compared to wild-type controls, and displayed inhibition at 20-ms inter-stimulus interval in PPR. These findings suggest that both elevated and diminished levels of Atp8a1 during early development are detrimental to brain connectivity, but only elevated Atp8a1 is associated with aberrant social behavior. Mice with augmented levels of Atp8a1 may therefore serve as a potential model in autism research.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Trastorno Autístico/metabolismo , Trastorno Autístico/psicología , Hipocampo/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Animales , Trastorno Autístico/genética , Conducta Animal , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/ultraestructura , Estudios de Casos y Controles , Niño , Preescolar , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas de Transferencia de Fosfolípidos/deficiencia , Proteínas de Transferencia de Fosfolípidos/genética , Conducta Social , Sinapsis/metabolismo , Sinapsis/ultraestructura , Lóbulo Temporal/metabolismo
18.
Int J Mol Sci ; 16(10): 23867-80, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26473831

RESUMEN

Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol) (PEG) side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially different effects on the hemolytic and antibacterial activities of copolymers depending on structural variations in the positions of cationic centers relative to hydrophobic groups. The PEG side chains dramatically reduced the hemolytic activities in copolymers with hydrophobic hexyl and cationic groups on the same repeating unit. However, in case of terpolymers with cationic and lipophilic groups placed on separate repeating units, the presence of PEG has significantly lower effect on hemolytic activities of these copolymers. PEGylated terpolymers displayed substantially lower activity against Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) suggesting the deterring effect of S. aureus' peptidoglycan cell wall against the penetration of PEGylated polymers. Time-kill studies confirmed the bactericidal activity of these copolymers and a 5 log reduction in E. coli colony forming units was observed within 2 h of polymer treatment.


Asunto(s)
Acrilatos/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Polietilenglicoles/farmacología , Staphylococcus aureus/efectos de los fármacos , Acrilatos/química , Antibacterianos/química , Cationes/química , Pared Celular/efectos de los fármacos , Farmacorresistencia Bacteriana , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Polietilenglicoles/química , Polímeros/química , Polímeros/farmacología , Ácidos Polimetacrílicos/química , Tensoactivos/química , Tensoactivos/farmacología
19.
Diagn Pathol ; 10: 119, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26204927

RESUMEN

BACKGROUND: Pathological classification of cervical intraepithelial neoplasia (CIN) is problematic as it relies on subjective criteria. We developed an imaging method that uses spectroscopy to assess the fluorescent intensity of cervical biopsies derived directly from hematoxylin and eosin (H&E) stained tissues. METHODS: Archived H&E slides were identified containing normal cervical tissue, CIN I, and CIN III cases, from a Community Hospital and an Academic Medical Center. Cases were obtained by consensus review of at least 2 senior pathologists. Images from H&E slides were captured first with bright field illumination and then with fluorescent illumination. We used a Zeiss Axio Observer Z1 microscope and an AxioVision 4.6.3-AP1 camera at excitation wavelength of 450-490 nm with emission captured at 515-565 nm. The 32-bit grayscale fluorescence images were used for image analysis. RESULTS: We reviewed 108 slides: 46 normal, 33 CIN I and 29 CIN III. Fluorescent intensity increased progressively in normal epithelial tissue as cells matured and advanced from the basal to superficial regions of the epithelium. In CIN I cases this change was less prominent as compared to normal. In high grade CIN lesions, there was a slight or no increase in fluorescent intensity. All groups examined were statistically different. CONCLUSION: Presently, there are no markers to help in classification of CIN I-III lesions. Our imaging method may complement standard H&E pathological review and provide objective criteria to support the CIN diagnosis.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Espectrometría de Fluorescencia/métodos , Displasia del Cuello del Útero/diagnóstico , Neoplasias del Cuello Uterino/diagnóstico , Algoritmos , Colorantes , Citodiagnóstico/métodos , Diagnóstico por Imagen/métodos , Eosina Amarillenta-(YS) , Femenino , Hematoxilina , Humanos , Neoplasias del Cuello Uterino/clasificación , Displasia del Cuello del Útero/clasificación
20.
Nanoscale ; 7(17): 7885-95, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854197

RESUMEN

This paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe3O4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe3O4@PC-CDs-Au NPs firstly involves the preparation of core-shell template NPs with magnetite nanocrystals clustered in the cores and fluorescent carbon dots (CDs) embedded in a porous carbon shell, followed by an in situ reduction of silver ions (Ag(+)) loaded in the porous carbon shell and a subsequent replacement of Ag NPs with Au NPs through a galvanic replacement reaction using HAuCl4 as a precursor. The Fe3O4@PC-CDs-Au NPs can enter the intracellular region and light up mouse melanoma B16F10 cells in multicolor mode. The porous carbon shell, anchored with hydrophilic hydroxyl/carboxyl groups, endows the Fe3O4@PC-CDs-Au NPs with excellent stability in the aqueous phase and a high loading capacity (719 mg g(-1)) for the anti-cancer drug doxorubicin (DOX). The superparamagnetic Fe3O4@PC-CDs-Au NPs with a saturation magnetization of 23.26 emu g(-1) produce localized heat under an alternating magnetic field, which triggers the release of the loaded drug. The combined photothermal effects of the Au nanocrystals and the CDs on/in the carbon shell can not only regulate the release rate of the loaded drug, but also efficiently kill tumor cells under NIR irradiation. Benefitting from their excellent optical properties, their magnetic field and NIR light-responsive drug release capabilities and their enhanced photothermal effect, such nanostructured Fe3O4@PC-CDs-Au hybrid NPs are very promising for simultaneous imaging diagnostics and high efficacy therapy.


Asunto(s)
Portadores de Fármacos/química , Colorantes Fluorescentes/química , Oro/química , Nanopartículas de Magnetita/química , Espectroscopía Infrarroja Corta/métodos , Animales , Antineoplásicos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Nanopartículas de Magnetita/toxicidad , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...