Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 356(8): e2300101, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37224805

RESUMEN

Monoclonal antibody infusions (mAb-i) are administered for the treatment of various diseases. They are often transported over long distances from the compounding site to the site of administration. However, transport studies are typically carried out with the original drug product but not with compounded mAb-i. To address this gap, the impact of mechanical stress on the formation of subvisible/nanoparticles in mAb-i was investigated by dynamic light scattering and flow imaging microscopy. Different mAb-i concentrations were subjected to vibrational orbital shaking and stored at 2-8°C up to 35 days. The screening revealed that pembrolizumab and bevacizumab infusions show the highest propensity for particle formation. Especially bevacizumab at low concentrations exhibited an increase in particle formation. Because of the unknown health risks associated with the long-term application of subvisible particles (SVPs)/nanoparticles in infusion bags, stability studies carried out in the frame of licensing application procedures should also focus on SVP formation in mAb-i. In general, pharmacists should minimize the time of storage and mechanical stress during transport, especially in the case of low-concentrated mAb-i. Moreover, if siliconized syringes are used, they should be washed once with saline solution to minimize particle entry.


Asunto(s)
Anticuerpos Monoclonales , Bevacizumab , Estrés Mecánico , Relación Estructura-Actividad , Preparaciones Farmacéuticas
2.
MAbs ; 8(7): 1347-1360, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27467113

RESUMEN

LukGH (LukAB) is a potent leukocidin of Staphylococcus aureus that lyses human phagocytic cells and is thought to contribute to immune evasion. Unlike the other bi-component leukocidins of S. aureus, LukGH forms a heterodimer before binding to its receptor, CD11b expressed on professional phagocytic cells, and displays significant sequence variation. We employed a high diversity human IgG1 library presented on yeast cells to discover monoclonal antibodies (mAbs) neutralizing the cytolytic activity of LukGH. Recombinant LukG and LukH monomers or a LukGH dimer were used as capture antigens in the library selections. We found that mAbs identified with LukG or LukH as bait had no or very low toxin neutralization potency. In contrast, LukGH dimer-selected antibodies proved to be highly potent, and several mAbs were able to neutralize even the most divergent LukGH variants. Based on biolayer interferometry and mesoscale discovery, the high affinity antibody binding site on the LukGH complex was absent on the individual monomers, suggesting that it was generated upon formation of the LukG-LukH dimer. X-ray crystallography analysis of the complex between the LukGH dimer and the antigen-binding fragment of a very potent mAb (PDB code 5K59) indicated that the epitope is located in the predicted cell binding region (rim domain) of LukGH. The corresponding IgG inhibited the binding of LukGH dimer to target cells. Our data suggest that knowledge of the native conformation of target molecules is essential to generate high affinity and functional mAbs.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Proteínas Bacterianas/inmunología , Leucocidinas/inmunología , Animales , Proteínas Bacterianas/química , Dimerización , Humanos , Leucocidinas/química
3.
MAbs ; 7(1): 243-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25523282

RESUMEN

Staphylococcus aureus is a major human pathogen associated with high mortality. The emergence of antibiotic resistance and the inability of antibiotics to counteract bacterial cytotoxins involved in the pathogenesis of S. aureus call for novel therapeutic approaches, such as passive immunization with monoclonal antibodies (mAbs). The complexity of staphylococcal pathogenesis and past failures with single mAb products represent considerable barriers for antibody-based therapeutics. Over the past few years, efforts have focused on neutralizing α-hemolysin. Recent findings suggest that the concerted actions of several cytotoxins, including the bi-component leukocidins play important roles in staphylococcal pathogenesis. Therefore, we aimed to isolate mAbs that bind to multiple cytolysins by employing high diversity human IgG1 libraries presented on the surface of yeast cells. Here we describe cross-reactive antibodies with picomolar affinity for α-hemolysin and 4 different bi-component leukocidins that share only ∼26% overall amino acid sequence identity. The molecular basis of cross-reactivity is the recognition of a conformational epitope shared by α-hemolysin and F-components of gamma-hemolysin (HlgAB and HlgCB), LukED and LukSF (Panton-Valentine Leukocidin). The amino acids predicted to form the epitope are conserved and known to be important for cytotoxic activity. We found that a single cross-reactive antibody prevented lysis of human phagocytes, epithelial and red blood cells induced by α-hemolysin and leukocidins in vitro, and therefore had superior effectiveness compared to α-hemolysin specific antibodies to protect from the combined cytolytic effect of secreted S. aureus toxins. Such mAb afforded high levels of protection in murine models of pneumonia and sepsis.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Proteínas Bacterianas/inmunología , Proteínas Hemolisinas/inmunología , Inmunoglobulina G/inmunología , Leucocidinas/inmunología , Staphylococcus aureus/inmunología , Animales , Anticuerpos Antibacterianos/química , Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Proteínas Bacterianas/química , Línea Celular , Proteínas Hemolisinas/química , Humanos , Inmunoglobulina G/química , Leucocidinas/química , Conejos , Staphylococcus aureus/química
4.
Biotechnol J ; 6(2): 231-43, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21298808

RESUMEN

Lactoperoxidase (LPO), a member of the peroxidase-cyclooxygenase superfamily, is found in multiple human exocrine secretions and acts as a first line of defense against invading microorganisms by production of antimicrobial oxidants. Because of its ability to efficiently catalyze one- and two-electron oxidation reactions of inorganic and organic compounds, the heme peroxidase is widely used in food biotechnology, cosmetic industry, and diagnostic kits. In order to probe its structural integrity, conformational, and thermal stability, we have undertaken a comprehensive investigation by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry (DSC). The oxidoreductase exhibits a high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of DTT. Due to its unique ester bonds between the prosthetic group and the protein as well as six intra-chain disulfides, unfolding of the central compact (-helical core occurs concomitantly with denaturation of the heme cavity. The corresponding enthalpic and entropic contributions to the free enthalpy of unfolding are presented. Together with spectroscopic data they will be discussed with respect to the known structure of bovine LPO and homologous myeloperoxidase as well as to its practical application.


Asunto(s)
Lactoperoxidasa/metabolismo , Animales , Rastreo Diferencial de Calorimetría , Bovinos , Dicroismo Circular , Estabilidad de Enzimas , Lactoperoxidasa/química , Espectrometría de Fluorescencia
5.
Biochim Biophys Acta ; 1814(2): 375-87, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20933108

RESUMEN

Myeloperoxidase (MPO) is a lysosomal heme enzyme present in the azurophilic granules of human neutrophils and monocytes. It is a critical element of the human innate immune system by exerting antimicrobial effects. It is a disulfide bridged dimer with each monomer containing a light and a heavy polypeptide and its biosynthesis and intracellular transport includes several posttranslational processing steps. By contrast, MPO recombinantly produced in Chinese hamster ovary cell lines is monomeric, partially unprocessed and contains a N-terminal propeptide (proMPO). It mirrors a second form of MPO constitutively secreted from normal bone marrow myeloid precursors. In order to clarify the impact of posttranslational modifications on the structural integrity and enzymology of these two forms of human myeloperoxidase, we have undertaken an investigation on the conformational and thermal stability of leukocyte MPO and recombinant proMPO by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Mature leucocyte MPO exhibits a peculiar high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of dithiothreitol. Unfolding of secondary and tertiary structure occurs concomitantly with denaturation of the heme cavity, reflecting the role of three MPO-typical heme to protein linkages and of six intra-chain disulfides for structural integrity by bridging N- and C-terminal regions of the protein. Recombinant monomeric proMPO follows a similar unfolding pattern but has a lower conformational and thermal stability. Spectroscopic and thermodynamic data of unfolding are discussed with respect to the known three-dimensional structure of leukocyte MPO as well as to known physiological roles.


Asunto(s)
Peroxidasa/química , Animales , Células CHO , Cricetinae , Cricetulus , Dimerización , Estabilidad de Enzimas , Hemo/química , Humanos , Leucocitos/enzimología , Peroxidasa/metabolismo , Conformación Proteica , Desnaturalización Proteica , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Respuesta de Proteína Desplegada
6.
Biochim Biophys Acta ; 1804(11): 2136-45, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20654740

RESUMEN

Catalase-peroxidases (KatGs) are ancestral bifunctional heme peroxidases found in archaeons, bacteria and lower eukaryotes. In contrast to homologous cytochrome c peroxidase (CcP) and ascorbate peroxidase (APx) homodimeric KatGs have a two-domain monomeric structure with a catalytic N-terminal heme domain and a C-terminal domain of high sequence and structural similarity but without obvious function. Nevertheless, without its C-terminal counterpart the N-terminal domain exhibits neither catalase nor peroxidase activity. Except some hybrid-type proteins all other members of the peroxidase-catalase superfamily lack this C-terminal domain. In order to probe the role of the two-domain monomeric structure for conformational and thermal stability urea and temperature-dependent unfolding experiments were performed by using UV-Vis-, electronic circular dichroism- and fluorescence spectroscopy, as well as differential scanning calorimetry. Recombinant prokaryotic (cyanobacterial KatG from Synechocystis sp. PCC6803) and eukaryotic (fungal KatG from Magnaporthe grisea) were investigated. The obtained data demonstrate that the conformational and thermal stability of bifunctional KatGs is significantly lower compared to homologous monofunctional peroxidases. The N- and C-terminal domains do not unfold independently. Differences between the cyanobacterial and the fungal enzyme are relatively small. Data will be discussed with respect to known structure and function of KatG, CcP and APx.


Asunto(s)
Catalasa/química , Cianobacterias/química , Peroxidasa/química , Ascorbato Peroxidasas , Rastreo Diferencial de Calorimetría , Citocromo-c Peroxidasa/química , Calor , Magnaporthe/metabolismo , Peroxidasas/química , Conformación Proteica , Desnaturalización Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Espectrofotometría Ultravioleta/métodos , Synechocystis/metabolismo , Termodinámica
7.
Arch Biochem Biophys ; 494(1): 72-7, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19944669

RESUMEN

Eosinophil peroxidase (EPO) and lactoperoxidase (LPO) are important constituents of the innate immune system of mammals. These heme enzymes belong to the peroxidase-cyclooxygenase superfamily and catalyze the oxidation of thiocyanate, bromide and nitrite to hypothiocyanate, hypobromous acid and nitrogen dioxide that are toxic for invading pathogens. In order to gain a better understanding of the observed differences in substrate specificity and oxidation capacity in relation to heme and protein structure, a comprehensive spectro-electrochemical investigation was performed. The reduction potential (E degrees ') of the Fe(III)/Fe(II) couple of EPO and LPO was determined to be -126mV and -176mV, respectively (25 degrees C, pH 7.0). Variable temperature experiments show that EPO and LPO feature different reduction thermodynamics. In particular, reduction of ferric EPO is enthalpically and entropically disfavored, whereas in LPO the entropic term, which selectively stabilizes the oxidized form, prevails on the enthalpic term that favors reduction of Fe(III). The data are discussed with respect to the architecture of the heme cavity and the substrate channel. Comparison with published data for myeloperoxidase demonstrates the effect of heme to protein linkages and heme distortion on the redox chemistry of mammalian peroxidases and in consequence on the enzymatic properties of these physiologically important oxidoreductases.


Asunto(s)
Eosinófilos/enzimología , Lactoperoxidasa/metabolismo , Peroxidasas/metabolismo , Animales , Bovinos , Humanos , Hierro/metabolismo , Lactoperoxidasa/química , Modelos Moleculares , Oxidación-Reducción , Peroxidasas/química , Conformación Proteica , Espectrofotometría Ultravioleta , Especificidad por Sustrato , Termodinámica
8.
J Biol Chem ; 284(38): 25929-37, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19608745

RESUMEN

In heme enzymes belonging to the peroxidase-cyclooxygenase superfamily the proximal histidine is in close interaction with a fully conserved asparagine. The crystal structure of a mixture of glycoforms of myeloperoxidase (MPO) purified from granules of human leukocytes prompted us to revise the orientation of this asparagine and the protonation status of the proximal histidine. The data we present contrast with previous MPO structures, but are strongly supported by molecular dynamics simulations. Moreover, comprehensive analysis of published lactoperoxidase structures suggest that the described proximal heme architecture is a general structural feature of animal heme peroxidases. Its importance is underlined by the fact that the MPO variant N421D, recombinantly expressed in mammalian cell lines, exhibited modified spectral properties and diminished catalytic activity compared with wild-type recombinant MPO. It completely lost its ability to oxidize chloride to hypochlorous acid, which is a characteristic feature of MPO and essential for its role in host defense. The presented crystal structure of MPO revealed further important differences compared with the published structures including the extent of glycosylation, interaction between light and heavy polypeptides, as well as heme to protein covalent bonds. These data are discussed with respect to biosynthesis and post-translational maturation of MPO as well as to its peculiar biochemical and biophysical properties.


Asunto(s)
Asparagina/química , Histidina/química , Leucocitos/enzimología , Peroxidasa/química , Asparagina/genética , Asparagina/metabolismo , Línea Celular , Cloruros/metabolismo , Cristalografía por Rayos X , Glicosilación , Hemo/química , Hemo/genética , Hemo/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Ácido Hipocloroso/metabolismo , Lactoperoxidasa/química , Lactoperoxidasa/genética , Lactoperoxidasa/metabolismo , Mutación Missense , Oxidación-Reducción , Peroxidasa/genética , Peroxidasa/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...