Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 184(4): 2064-2077, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32999006

RESUMEN

The availability of inorganic phosphate (Pi) limits plant growth and crop productivity on much of the world's arable land. To better understand how plants cope with deficient and variable supplies of this essential nutrient, we used Pi imaging to spatially resolve and quantify cytosolic Pi concentrations and the respective contributions of Pi uptake, metabolic recycling, and vacuolar sequestration to cytosolic Pi homeostasis in Arabidopsis (Arabidopsis thaliana) roots. Microinjection coupled with confocal microscopy was used to calibrate a FRET-based Pi sensor to determine absolute, rather than relative, Pi concentrations in live plants. High-resolution mapping of cytosolic Pi concentrations in different cells, tissues, and developmental zones of the root revealed that cytosolic concentrations varied between developmental zones, with highest levels in the transition zone, whereas concentrations were equivalent in epidermis, cortex, and endodermis within each zone. Pi concentrations in all zones were reduced, at different rates, by Pi starvation, but the developmental pattern of Pi concentration persisted. Pi uptake, metabolic recycling, and vacuolar sequestration were distinguished in each zone by using cyanide to block Pi assimilation in wild-type plants and a vacuolar Pi transport mutant, and then measuring the subsequent change in cytosolic Pi concentration over time. Each of these processes exhibited distinct spatial profiles in the root, but only vacuolar Pi sequestration corresponded with steady-state cytosolic Pi concentrations. These results highlight the complexity of Pi dynamics in live plants and revealed developmental control of root Pi homeostasis, which has potential implications for plant sensing and signaling of Pi.


Asunto(s)
Arabidopsis/química , Arabidopsis/crecimiento & desarrollo , Transporte Biológico/fisiología , Citosol/química , Fosfatos/análisis , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo
2.
ACS Sens ; 2(11): 1584-1588, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29043796

RESUMEN

Continuously monitoring specific biomarkers offer a promising method to interrogate disease status and progression. In this work we have demonstrated a composite hydrogel-based sensing platform that may be used for optical detection of lactate. The sensor design consists of microsized enzymatic sensors that are embedded in an outer hydrogel matrix. In these engineered microdomains, encapsulated lactate oxidase serves as the bioactive component, phosphorescent metalloporphyrin acts as the optical transducer, and polyelectrolyte multilayers coated on the enzymatic microsensors control the permeation of lactate into the microsensors. The response of the composite hydrogel-based lactate sensors was characterized by subjecting the sensors to lactate concentration challenges at low physiological oxygen levels. The analytical range and the mean sensitivity were determined to be 9.2 ± 0.83 mg/dL and 11 ± 0.90% dL mg-1, respectively. Repeated cyclic exposure to high levels of lactate revealed that these sensors were extremely stable, with no significant loss in sensor response after 20 cycles. These preliminary results support the premise that these composite hydrogels are capable of continuous lactate tracking and have the potential for use as fully implantable optical lactate sensors.


Asunto(s)
Técnicas Biosensibles/instrumentación , Hidrogeles/química , Ácido Láctico/análisis , Oxigenasas de Función Mixta/metabolismo , Dispositivos Ópticos , Alginatos/química , Catalasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Microesferas , Oxigenasas de Función Mixta/química , Porfirinas/química
3.
ACS Omega ; 2(6): 2499-2506, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023667

RESUMEN

A new approach to sensing and imaging hydrogen peroxide (H2O2) was developed using microcapsule-based dual-emission ratiometric luminescent biosensors. Bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) sensitive to H2O2 were coencapsulated with insensitive FluoSpheres (FSs) within polymeric capsules fabricated via the layer-by-layer method. Under single-wavelength excitation, the microcapsule-based biosensors exhibited emission bands at ∼516 and ∼682 nm resulting from the FSs and BSA-AuNCs, respectively. The polyelectrolyte multilayers lining the microcapsules were effective in protecting BSA-AuNCs from the degradation catalyzed by proteases (chymotrypsin, trypsin, papain, and proteinase K) and subsequent luminescent quenching, overcoming a key limitation of prior BSA-AuNC-based sensing systems. The luminescent response of the sensors was also found to be independent of local changes in pH (5-9). Quenching of the AuNCs in the presence of H2O2 enabled the spectroscopic quantification and imaging of changes in H2O2 concentration from 0 to 1 mM. The microcapsule sensors were easily phagocytized by murine macrophage cells (RAW 264.7), were effective as intracellular H2O2 imaging probes, and were successfully used to detect local release of H2O2 in response to an external chemical stimulus.

4.
Microsc Microanal ; 22(2): 300-10, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26879593

RESUMEN

Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been used to report relative concentrations of ions and small molecules, as well as changes in protein conformation, posttranslational modifications, and protein-protein interactions. Changes in FRET are typically quantified through ratiometric analysis of fluorescence intensities. Here we describe methods to evaluate ratiometric imaging data acquired through confocal microscopy of a FRET-based inorganic phosphate biosensor in different cells and subcellular compartments of Arabidopsis thaliana. Linear regression was applied to donor, acceptor, and FRET-derived acceptor fluorescence intensities obtained from images of multiple plants to estimate FRET ratios and associated location-specific spectral correction factors with high precision. FRET/donor ratios provided a combination of high dynamic range and precision for this biosensor when applied to the cytosol of both root and leaf cells, but lower precision when this ratiometric method was applied to chloroplasts. We attribute this effect to quenching of donor fluorescence because high precision was achieved with FRET/acceptor ratios and thus is the preferred ratiometric method for this organelle. A ligand-insensitive biosensor was also used to distinguish nonspecific changes in FRET ratios. These studies provide a useful guide for conducting quantitative ratiometric studies in live plants that is applicable to any FRET-based biosensor.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Orgánulos/química , Células Vegetales/química , Arabidopsis/química , Microscopía Fluorescente/métodos
5.
PLoS One ; 10(10): e0141128, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26484766

RESUMEN

Inorganic phosphate (Pi) has central roles in metabolism, cell signaling and energy conversion. The distribution of Pi to each cell and cellular compartment of an animal must be tightly coordinated with its dietary supply and with the varied metabolic demands of individual cells. An analytical method for monitoring Pi dynamics with spatial and temporal resolution is therefore needed to gain a comprehensive understanding of mechanisms governing the transport and recycling of this essential nutrient. Here we demonstrate the utility of a genetically encoded FRET-based Pi sensor to assess cellular Pi levels in the nematode Caenorhabditis elegans. The sensor was expressed in different cells and tissues of the animal, including head neurons, tail neurons, pharyngeal muscle, and the intestine. Cytosolic Pi concentrations were monitored using ratiometric imaging. Injection of phosphate buffer into intestinal cells confirmed that the sensor was responsive to changes in Pi concentration in vivo. Live Pi imaging revealed cell-specific and developmental stage-specific differences in cytosolic Pi concentrations. In addition, cellular Pi levels were perturbed by food deprivation and by exposure to the respiratory inhibitor cyanide. These results suggest that Pi concentration is a sensitive indicator of metabolic status. Moreover, we propose that live Pi imaging in C. elegans is a powerful approach to discern mechanisms that govern Pi distribution in individual cells and throughout an animal.


Asunto(s)
Técnicas Biosensibles , Caenorhabditis elegans/metabolismo , Mucosa Intestinal/metabolismo , Neuronas/metabolismo , Músculos Faríngeos/metabolismo , Fosfatos/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Citosol/metabolismo , Diagnóstico por Imagen , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/metabolismo , Intestinos/citología , Neuronas/citología , Músculos Faríngeos/citología
6.
Plant Physiol ; 167(3): 628-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25624397

RESUMEN

Despite variable and often scarce supplies of inorganic phosphate (Pi) from soils, plants must distribute appropriate amounts of Pi to each cell and subcellular compartment to sustain essential metabolic activities. The ability to monitor Pi dynamics with subcellular resolution in live plants is, therefore, critical for understanding how this essential nutrient is acquired, mobilized, recycled, and stored. Fluorescence indicator protein for inorganic phosphate (FLIPPi) sensors are genetically encoded fluorescence resonance energy transfer-based sensors that have been used to monitor Pi dynamics in cultured animal cells. Here, we present a series of Pi sensors optimized for use in plants. Substitution of the enhanced yellow fluorescent protein component of a FLIPPi sensor with a circularly permuted version of Venus enhanced sensor dynamic range nearly 2.5-fold. The resulting circularly permuted FLIPPi sensor was subjected to a high-efficiency mutagenesis strategy that relied on statistical coupling analysis to identify regions of the protein likely to influence Pi affinity. A series of affinity mutants was selected with dissociation constant values of 0.08 to 11 mm, which span the range for most plant cell compartments. The sensors were expressed in Arabidopsis (Arabidopsis thaliana), and ratiometric imaging was used to monitor cytosolic Pi dynamics in root cells in response to Pi deprivation and resupply. Moreover, plastid-targeted versions of the sensors expressed in the wild type and a mutant lacking the PHOSPHATE TRANSPORT4;2 plastidic Pi transporter confirmed a physiological role for this transporter in Pi export from root plastids. These circularly permuted FLIPPi sensors, therefore, enable detailed analysis of Pi dynamics with subcellular resolution in live plants.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Imagenología Tridimensional , Fosfatos/metabolismo , Transporte Biológico , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/metabolismo , Mutación/genética , Fosfatos/farmacología , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Plastidios/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...