Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 375(6584): eabk2432, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239393

RESUMEN

For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Transcriptoma , Animales , Núcleo Celular/metabolismo , Bases de Datos Genéticas , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genes de Insecto , Masculino , RNA-Seq , Caracteres Sexuales , Análisis de la Célula Individual , Factores de Transcripción/genética
3.
Genome Res ; 31(10): 1938-1951, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34389661

RESUMEN

Organ function relies on the spatial organization and functional coordination of numerous cell types. The Drosophila ovary is a widely used model system to study the cellular activities underlying organ function, including stem cell regulation, cell signaling and epithelial morphogenesis. However, the relative paucity of cell type-specific reagents hinders investigation of molecular functions at the appropriate cellular resolution. Here, we used single-cell RNA sequencing to characterize all cell types of the stem cell compartment and early follicles of the Drosophila ovary. We computed transcriptional signatures and identified specific markers for nine states of germ cell differentiation and 23 somatic cell types and subtypes. We uncovered an unanticipated diversity of escort cells, the somatic cells that directly interact with differentiating germline cysts. Three escort cell subtypes reside in discrete anatomical positions and express distinct sets of secreted and transmembrane proteins, suggesting that diverse micro-environments support the progressive differentiation of germ cells. Finally, we identified 17 follicle cell subtypes and characterized their transcriptional profiles. Altogether, we provide a comprehensive resource of gene expression, cell type-specific markers, spatial coordinates, and functional predictions for 34 ovarian cell types and subtypes.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Diferenciación Celular/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Células Germinativas , Folículo Ovárico/metabolismo , Ovario/metabolismo
4.
Dev Cell ; 56(12): 1742-1755.e4, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34081907

RESUMEN

Organogenesis requires exquisite spatiotemporal coordination of cell morphogenesis, migration, proliferation, and differentiation of multiple cell types. For gonads, this involves complex interactions between somatic and germline tissues. During Drosophila ovary morphogenesis, primordial germ cells (PGCs) either are sequestered in stem cell niches and are maintained in an undifferentiated germline stem cell state or transition directly toward differentiation. Here, we identify a mechanism that links hormonal triggers of somatic tissue morphogenesis with PGC differentiation. An early ecdysone pulse initiates somatic swarm cell (SwC) migration, positioning these cells close to PGCs. A second hormone peak activates Torso-like signal in SwCs, which stimulates the Torso receptor tyrosine kinase (RTK) signaling pathway in PGCs promoting their differentiation by de-repression of the differentiation gene, bag of marbles. Thus, systemic temporal cues generate a transitory signaling center that coordinates ovarian morphogenesis with stem cell self-renewal and differentiation programs, highlighting a more general role for such centers in reproductive and developmental biology.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Drosophila/genética , Células Germinativas/crecimiento & desarrollo , Morfogénesis/genética , Ovario/crecimiento & desarrollo , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Larva/genética , Larva/crecimiento & desarrollo , Ovario/metabolismo
5.
Development ; 148(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33722898

RESUMEN

Fertility and gamete reserves are maintained by asymmetric divisions of the germline stem cells to produce new stem cells or daughters that differentiate as gametes. Before entering meiosis, differentiating germ cells (GCs) of sexual animals typically undergo cystogenesis. This evolutionarily conserved process involves synchronous and incomplete mitotic divisions of a GC daughter (cystoblast) to generate sister cells connected by intercellular bridges that facilitate the exchange of materials to support rapid expansion of the gamete progenitor population. Here, we investigated cystogenesis in zebrafish and found that early GCs are connected by ring canals, and show that Deleted in azoospermia-like (Dazl), a conserved vertebrate RNA-binding protein (Rbp), is a regulator of this process. Analysis of dazl mutants revealed the essential role of Dazl in regulating incomplete cytokinesis, germline cyst formation and germline stem cell specification before the meiotic transition. Accordingly, dazl mutant GCs form defective ring canals, and ultimately remain as individual cells that fail to differentiate as meiocytes. In addition to promoting cystoblast divisions and meiotic entry, dazl is required for germline stem cell establishment and fertility.


Asunto(s)
Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Citocinesis/fisiología , Femenino , Fertilidad/genética , Fertilidad/fisiología , Técnicas de Inactivación de Genes , Masculino , Mutagénesis , Células Madre/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Genes Dev ; 34(3-4): 239-249, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919193

RESUMEN

Addressing the complexity of organogenesis at a system-wide level requires a complete understanding of adult cell types, their origin, and precursor relationships. The Drosophila ovary has been a model to study how coordinated stem cell units, germline, and somatic follicle stem cells maintain and renew an organ. However, lack of cell type-specific tools have limited our ability to study the origin of individual cell types and stem cell units. Here, we used a single-cell RNA sequencing approach to uncover all known cell types of the developing ovary, reveal transcriptional signatures, and identify cell type-specific markers for lineage tracing. Our study identifies a novel cell type corresponding to the elusive follicle stem cell precursors and predicts subtypes of known cell types. Altogether, we reveal a previously unanticipated complexity of the developing ovary and provide a comprehensive resource for the systematic analysis of ovary morphogenesis.


Asunto(s)
Drosophila/citología , Folículo Ovárico/citología , Células Madre/citología , Animales , Drosophila/genética , Drosophila/metabolismo , Femenino , Modelos Animales , Ovario/citología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética
7.
Development ; 144(11): 1937-1947, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28559239

RESUMEN

Two different compartments support germline stem cell (GSC) self-renewal and their timely differentiation: the classical niche provides maintenance cues, while a differentiation compartment, formed by somatic escort cells (ECs), is required for proper GSC differentiation. ECs extend long protrusions that invade between tightly packed germ cells, and alternate between encapsulating and releasing them. How ECs achieve this dynamic balance has not been resolved. By combining live imaging and genetic analyses in Drosophila, we have characterised EC shapes and their dynamic changes. We show that germ cell encapsulation by ECs is a communal phenomenon, whereby EC-EC contacts stabilise an extensive meshwork of protrusions. We further show that Signal Transducer and Activator of Transcription (Stat) and Epidermal Growth Factor Receptor (Egfr) signalling sustain EC protrusiveness and flexibility by combinatorially affecting the activity of different RhoGTPases. Our results reveal how a complex signalling network can determine the shape of a cell and its dynamic behaviour. It also explains how the differentiation compartment can establish extensive contacts with germ cells, while allowing a continual posterior movement of differentiating GSC daughters.


Asunto(s)
Compartimento Celular , Diferenciación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Células Germinativas/citología , Sistema de Señalización de MAP Quinasas , Factores de Transcripción STAT/metabolismo , Células Madre/citología , Animales , Proteínas de Drosophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Células Germinativas/metabolismo , Modelos Biológicos
8.
Elife ; 42015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25875301

RESUMEN

Cell migration and polarization is controlled by signals in the environment. Migrating cells typically form filopodia that extend from the cell surface, but the precise function of these structures in cell polarization and guided migration is poorly understood. Using the in vivo model of zebrafish primordial germ cells for studying chemokine-directed single cell migration, we show that filopodia distribution and their dynamics are dictated by the gradient of the chemokine Cxcl12a. By specifically interfering with filopodia formation, we demonstrate for the first time that these protrusions play an important role in cell polarization by Cxcl12a, as manifested by elevation of intracellular pH and Rac1 activity at the cell front. The establishment of this polarity is at the basis of effective cell migration towards the target. Together, we show that filopodia allow the interpretation of the chemotactic gradient in vivo by directing single-cell polarization in response to the guidance cue.


Asunto(s)
Movimiento Celular , Polaridad Celular , Quimiocina CXCL12/metabolismo , Células Germinativas/citología , Espacio Intracelular/metabolismo , Seudópodos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Embrión no Mamífero/metabolismo , Endocitosis/efectos de los fármacos , Células Germinativas/metabolismo , Modelos Biológicos , Receptores CXCR4/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
9.
Dev Cell ; 23(1): 210-8, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22705393

RESUMEN

Single-cell migration is a key process in development, homeostasis, and disease. Nevertheless, the control over basic cellular mechanisms directing cells into motile behavior in vivo is largely unknown. Here, we report on the identification of a minimal set of parameters the regulation of which confers proper morphology and cell motility. Zebrafish primordial germ cells rendered immotile by knockdown of Dead end, a negative regulator of miRNA function, were used as a platform for identifying processes restoring motility. We have defined myosin contractility, cell adhesion, and cortex properties as factors whose proper regulation is sufficient for restoring cell migration of this cell type. Tight control over the level of these cellular features, achieved through a balance between miRNA-430 function and the action of the RNA-binding protein Dead end, effectively transforms immotile primordial germ cells into polarized cells that actively migrate relative to cells in their environment.


Asunto(s)
Movimiento Celular/fisiología , Células Germinativas/citología , Proteínas de Unión al ARN/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Adhesión Celular/fisiología , Polaridad Celular/fisiología , Células Germinativas/fisiología , Homeostasis/fisiología , Presión Hidrostática , MicroARNs/genética , Datos de Secuencia Molecular , Miosinas/fisiología
10.
Curr Top Dev Biol ; 99: 79-113, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22365736

RESUMEN

The identification of small RNA molecules and the elucidation of their functions in the cell enhanced our understanding of the mechanisms controlling gene expression at the posttranscriptional level. Here, we review findings concerning the role small RNA molecules play in the development of the germline in various organisms. In this context, microRNAs (miRNAs) function predominantly in regulating mRNA expression and turnover and direct the expression of specific proteins to founders of the germline, the primordial germ cells (PGCs). miRNA function is then important for the maintenance of germline stem cells (GSCs) in their niche and for coordinating GSC differentiation into the gametes. The second family of small RNA molecules, the short endo-siRNAs, regulate gene expression posttranscriptionally as well but are also important for transposable elements regulation and thus for genome stability. Last, the Piwi-interacting small RNAs (piRNAs) are specifically expressed in the germline, where they primarily control transposon activity, guarding the genome from potential damage associated with excessive transposition. Together, the function of these three groups of small RNAs ensures proper development and continuation of the germline through the generations.


Asunto(s)
Células Germinativas/crecimiento & desarrollo , ARN Interferente Pequeño/fisiología , Animales , Elementos Transponibles de ADN , Humanos , MicroARNs/fisiología
11.
Dev Dyn ; 240(3): 695-703, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21337467

RESUMEN

The Hu proteins are RNA-binding proteins known to be involved in various aspects of RNA metabolism, such as nucleo-cytoplasmic shuttling, translation, and stability. These proteins are predominantly expressed in neuronal tissues and are important for neuronal differentiation and plasticity. Here, we report on the regulation over hub mRNA stability and function in zebrafish embryos. Using reporters encoding for fluorescent proteins, we show that hub RNA is a target of global miRNA-mediated repression, while the RNA-binding protein Dead end (Dnd) contributes to maintenance of the expression in the primordial germ cells (PGCs).


Asunto(s)
Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Embrión no Mamífero/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , MicroARNs/genética , Estabilidad del ARN/genética , Proteínas de Pez Cebra/metabolismo , Animales , Citometría de Flujo , Hibridación in Situ , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...