Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Microdevices ; 15(1): 97-108, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22965807

RESUMEN

We present the design, analysis, construction, and culture results of a microfluidic device for the segregation and chemical stimulation of primary rat hippocampal neurons. Our device is designed to achieve spatio-temporal solute delivery to discrete sections of neurons with mitigated mechanical stress. We implement a geometric guidance technique to direct axonal processes of the neurons into specific areas of the device to achieve solute segregation along routed cells. Using physicochemical modeling, we predict flows, concentration profiles, and mechanical stresses within pertiment sections of the device. We demonstrate cell viability and growth within the closed device over a period of 11 days. Additionally, our modeling methodology may be generalized and applied to other device geometries.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Hipocampo/citología , Fenómenos Mecánicos , Técnicas Analíticas Microfluídicas/instrumentación , Neuronas/citología , Animales , Proliferación Celular , Diseño de Equipo , Femenino , Masculino , Ratas , Factores de Tiempo
2.
J Neurochem ; 123(6): 904-10, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22928776

RESUMEN

Formation of an axon is the first morphological evidence of neuronal polarization, visible as a profound outgrowth of the axon compared with sibling neurites. One unsolved question on the mechanism of axon formation is the role of axon outgrowth in axon specification. This question was difficult to assess, because neurons freely extend their neurites in a conventional culture. Here, we leveraged surface nano/micro-modification techniques to fabricate a template substrate for constraining neurite lengths of cultured neurons. Using the template, we asked (i) Do neurons polarize even if all neurites cannot grow sufficiently long? (ii) Would the neurite be fated to become an axon if only one was allowed to grow long? A pattern with symmetrical short paths (20 µm) was used to address the former question, and an asymmetrical pattern with one path extended to 100 µm for the latter. Axon formation was evaluated by tau-1/MAP2 immunostaining and live-cell imaging of constitutively-active kinesin-1. We found that (1) neurons cannot polarize when extension of all neurites is restricted and that (2) when only a single neurite is permitted to grow long, neurons polarize and the longest neurite becomes the axon. These results provide clear evidence that axon outgrowth is required for its specification.


Asunto(s)
Axones/fisiología , Conos de Crecimiento/fisiología , Hipocampo/citología , Neuritas/fisiología , Neuronas/fisiología , Animales , Femenino , Feto/citología , Feto/fisiología , Hipocampo/fisiología , Neuronas/ultraestructura , Embarazo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
3.
J Neurosci ; 26(37): 9462-70, 2006 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-16971530

RESUMEN

A critical transition in neuron development is formation of the axon, which establishes the polarized structure of the neuron that underlies its entire input and output capabilities. The morphological events that occur during axonogenesis have long been known, yet the molecular determinants underlying axonogenesis remain poorly understood. We demonstrate here that axonogenesis requires activated c-Jun N-terminal kinase (JNK). JNK is expressed throughout the neuron, but its phosphorylated, activated form is highly enriched in the axon. In young axons, activated JNK forms a proximodistal gradient of increasing intensity, beginning at about the point where the axon exceeds the lengths of the other neurites (minor processes). Treatment with SP600125, a specific inhibitor of JNK, reversibly inhibits axonogenesis but does not prevent the formation of minor processes or their differentiation into dendrites (based on their immunostaining with marker proteins). Expression of a dominant-negative construct against JNK similarly prevents axonogenesis. Investigation of JNK targets revealed that activating transcription factor-2 is phosphorylated under normal conditions in neurons, and its phosphorylation is significantly attenuated after JNK inhibition. These results demonstrate that activated JNK is required for axonogenesis but not formation of minor processes or development of dendrites.


Asunto(s)
Diferenciación Celular/fisiología , Conos de Crecimiento/enzimología , Hipocampo/embriología , Hipocampo/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factor de Transcripción Activador 2/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dendritas/enzimología , Dendritas/ultraestructura , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Proteínas tau/metabolismo
4.
J Neurosci ; 26(31): 8115-25, 2006 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-16885225

RESUMEN

When expressed in cultured hippocampal neurons, the metabotropic glutamate receptor mGluR1a is polarized to dendrites and concentrated at postsynaptic sites. We used a mutational analysis to determine how previously identified protein interaction motifs in the C terminus of mGluR1a contribute to its localization. Our results show that the polyproline motif that mediates interaction with Homer family proteins is critical for the synaptic clustering of mGluR1a. A single point mutation in this motif, which prevents the binding of Homer with mGluR1a, reduced its colocalization with a postsynaptic marker to near-chance levels but did not affect its dendritic polarity. In contrast, deleting the PDZ (postsynaptic density-95/Discs large/zona occludens-1) binding domain, which interacts with Tamalin and Shank, had no effect on synaptic localization. Neither of these protein interaction motifs is important for trafficking to the plasma membrane or for polarization to dendrites. Although deleting the entire C terminus of mGluR1a only modestly reduced its dendritic polarity, this domain was sufficient to redirect an unpolarized reporter protein to dendrites. These observations suggest that mGluR1a contains redundant dendritic targeting signals. Together, our results indicate that the localization of mGluR1a involves two distinct steps, one that targets the protein to dendrites and a second that sequesters it at postsynaptic sites; different protein interactions motifs mediate each step.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Dendritas/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica , Mapeo de Interacción de Proteínas , Ratas , Receptores de Glutamato Metabotrópico/química , Relación Estructura-Actividad , Sinapsis/metabolismo , Distribución Tisular
5.
J Neurobiol ; 66(11): 1183-94, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16858695

RESUMEN

At the leading edge of a growing axon, the growth cone determines the path the axon takes and also plays a role in the formation of branches, decisions that are regulated by a complex array of chemical signals. Here, we used microfabrication technology to determine whether differences in substrate geometry, independent of changes in substrate chemistry, can modulate growth cone motility and branching, by patterning a polylysine grid of narrow (2 or 5 microm wide) intersecting lines. The shape of the intersections varied from circular nodes 15 microm in diameter to simple crossed lines (nodeless intersections). Time-lapse recordings of cultured hippocampal neurons showed that simple variations in substrate geometry changed growth cone shape, and altered the rate of growth and the probability of branching. When crossing onto a node intersection the growth cone paused, often for hours, and microtubules appeared to defasciculate. Once beyond the node, filopodia and lamellipodia persisted at that site, sometimes forming a collateral branch. At nodeless intersections, the growth cone passed through with minimal hesitation, often becoming divided into separate areas of motility that led to the growth of separate branches. When several lines intersected at a common point, growth cones sometimes split into several subdivisions, resulting in the emergence of as many as five branches. Such experiments revealed an intrinsic preference for branches to form at angles less than 90 degrees . These data show that simple changes in the geometry of a chemically homogeneous substrate are detected by the growth cone and can regulate axonal growth and the formation of branches.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/ultraestructura , Conos de Crecimiento/fisiología , Regeneración Nerviosa/fisiología , Animales , Citoesqueleto/fisiología , Ratas
6.
Neuron ; 49(6): 797-804, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16543128

RESUMEN

We used the accumulation of constitutively active kinesin motor domains as a measure of where kinesins translocate in developing neurons. Throughout development, truncated Kinesin-3 accumulates at the tips of all neurites. In contrast, Kinesin-1 selectively accumulates in only a subset of neurites. Before neurons become polarized, truncated Kinesin-1 accumulates transiently in a single neurite. Coincident with axon specification, truncated Kinesin-1 accumulates only in the emerging axon and no longer appears in any other neurite. The translocation of Kinesin-1 along a biochemically distinct track leading to the nascent axon could ensure the selective delivery of Kinesin-1 cargoes to the axon and hence contribute to its molecular specification. Imaging YFP-tagged truncated Kinesin-1 provides the most precise definition to date of when neuronal polarity first emerges and allows visualization of the molecular differentiation of the axon in real time.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Cinesinas/metabolismo , Proteínas Motoras Moleculares/fisiología , Animales , Biomarcadores/metabolismo , Células Cultivadas , Embrión de Mamíferos , Hipocampo/citología , Cinesinas/genética , Proteínas Luminiscentes , Neuritas/metabolismo , Neuronas/citología , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Ratas , Factores de Tiempo , Transfección/métodos
7.
Neurochem Res ; 28(11): 1639-48, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14584818

RESUMEN

We present here a two-step strategy for micropatterning proteins on a substrate to control neurite growth in culture. First, conventional microcontact printing is used to prepare a micropattern of protein A, which binds the Fc fragment of immunoglobulins. Then, a chimeric protein, consisting of the extracellular domain of a guidance protein recombinantly linked to the Fc fragment of IgG (prepared using conventional molecular techniques), is applied from solution. The chimeric protein binds to the patterned protein A, taking on its geometric pattern. Using this method, we have micropatterned the extracellular domain of the cell adhesion molecule, L1 (as an L1-Fc chimera) and demonstrated that it retains its ability to selectively guide axonal growth. L1-Fc micropatterned on a background of poly-L-lysine resulted in selective growth of the axons on the micropattern, whereas the somata and dendrites were unresponsive. Substrates bearing simultaneous micropatterns of L1-Fc and poly-L-lysine on a background of untreated glass were also created. Using this approach, cell body position was controlled by manipulating the dimensions of the poly-L-lysine pattern, and the dendrites were constrained to the poly-L-lysine pattern, while the axons grew preferentially on L1-Fc. The two-step microcontact printing method allows preparation of substrates that contain guidance proteins in geometric patterns with resolution of approximately 1 microm. This method should be broadly applicable to many classes of proteins.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Materiales Biocompatibles Revestidos/química , Cristalización/métodos , Nanotecnología/métodos , Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Neuritas/fisiología , Neuritas/ultraestructura , Axones/fisiología , Técnicas de Cultivo de Célula/instrumentación , División Celular/fisiología , Materiales Biocompatibles Revestidos/síntesis química , Hipocampo/fisiología , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Nanotecnología/instrumentación , Molécula L1 de Adhesión de Célula Nerviosa/química , Neuronas/citología , Neuronas/fisiología , Fotograbar/instrumentación , Fotograbar/métodos , Polilisina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...