Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776326

RESUMEN

Understanding past coastal variability is valuable for contextualizing modern changes in coastal settings, yet existing Holocene paleoceanographic records for the North American Pacific Coast commonly originate from offshore marine sediments and may not represent the dynamic coastal environment. A potential archive of eastern Pacific Coast environmental variability is the intertidal mussel species Mytilus californianus. Archaeologists have collected copious stable isotopic (δ18O and δ13C) data from M. californianus shells to study human history at California's Channel Islands. When analyzed together, these isotopic data provide windows into 9000 years of Holocene isotopic variability and M. californianus life history. Here we synthesize over 6000 δ18O and δ13C data points from 13 published studies to investigate M. californianus shell isotopic variability across ontogenetic, geographic, seasonal, and millennial scales. Our analyses show that M. californianus may grow and record environmental information more irregularly than expected due to the competing influences of calcification, ontogeny, metabolism, and habitat. Stable isotope profiles with five or more subsamples per shell recorded environmental information ranging from seasonal to millennial scales, depending on the number of shells analyzed and the resolution of isotopic subsampling. Individual shell profiles contained seasonal cycles and an accurate inferred annual temperature range of ~ 5°C, although ontogenetic growth reduction obscured seasonal signals as organisms aged. Collectively, the mussel shell record reflected millennial-scale climate variability and an overall 0.52‰ depletion in δ18Oshell from 8800 BP to the present. The archive also revealed local-scale oceanographic variability in the form of a warmer coastal mainland δ18Oshell signal (-0.32‰) compared to a cooler offshore islands δ18Oshell signal (0.33‰). While M. californianus is a promising coastal archive, we emphasize the need for high-resolution subsampling from multiple individuals to disentangle impacts of calcification, metabolism, ontogeny, and habitat and more accurately infer environmental and biological patterns recorded by an intertidal species.


Asunto(s)
Isótopos de Carbono , Mytilus , Isótopos de Oxígeno , Estaciones del Año , Animales , Mytilus/metabolismo , Mytilus/crecimiento & desarrollo , Isótopos de Oxígeno/análisis , Isótopos de Carbono/análisis , Clima , Rasgos de la Historia de Vida , Ecosistema , California , Exoesqueleto/química , Exoesqueleto/crecimiento & desarrollo , Exoesqueleto/metabolismo
2.
PLoS One ; 17(2): e0262939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139090

RESUMEN

Recent work on microbe-host interactions has revealed an important nexus between the environment, microbiome, and host fitness. Marine invertebrates that build carbonate skeletons are of particular interest in this regard because of predicted effects of ocean acidification on calcified organisms, and the potential of microbes to buffer these impacts. Here we investigate the role of sulfate-reducing bacteria, a group well known to affect carbonate chemistry, in Pacific oyster (Magallana gigas) shell formation. We reared oyster larvae to 51 days post fertilization and exposed organisms to control and sodium molybdate conditions, the latter of which is thought to inhibit bacterial sulfate reduction. Contrary to expectations, we found that sodium molybdate did not uniformly inhibit sulfate-reducing bacteria in oysters, and oysters exposed to molybdate grew larger shells over the experimental period. Additionally, we show that microbiome composition, host gene expression, and shell size were distinct between treatments earlier in ontogeny, but became more similar by the end of the experiment. Although additional testing is required to fully elucidate the mechanisms, our work provides preliminary evidence that M. gigas is capable of regulating microbiome dysbiosis caused by environmental perturbations, which is reflected in shell development.


Asunto(s)
Molibdeno
3.
Science ; 372(6539): 237-238, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33859021
4.
Sci Rep ; 10(1): 12118, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694560

RESUMEN

Oysters are unusual among bivalves in that they possess chambers, often filled with soft, chalky calcite, that are irregularly scattered throughout the shell. Because the function of these so-called chalky deposits is still unclear, evaluating the growth and distribution of chalk is important for elucidating the ecological function of this unique shell trait. Specimens of the Pacific oyster Magallana gigas, an oyster well known for chalk expression, were grown in Bodega Harbor, Bodega Bay, CA. At the end of an 11 month growing period, specimens were culled and selected animals were submitted for x-ray computed-tomography imaging. Three-dimensional reconstructions of oyster shells were used to assess the overall distribution of chalk, and also to better understand the relationship between chalk and other structures within the shell. Results indicate that chalky deposits underly sculptural features on the shell exterior, such as external ridges and changes in growth direction, and also that there is a relationship between chalk formation and oyster processes of cementation. Overall, chalk is useful for a cementing lifestyle because it enables morphological plasticity needed to conform to irregular substrates, but also acts as a cheap building material to facilitate rapid growth.


Asunto(s)
Exoesqueleto/ultraestructura , Carbonato de Calcio/química , Ostreidae/crecimiento & desarrollo , Exoesqueleto/química , Animales , Ostreidae/química , Ostreidae/ultraestructura , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...