Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34639032

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects, proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozotocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal activation in pain processing centers was studied with FosB immunohistochemistry, and functionality was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter body weight or blood glucose levels during the 8-week observation period. However, PACAP attenuated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly reduced the morphological signs characteristic for neuropathy: axon-myelin separation, mitochondrial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels. Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in diabetes-associated complications, including diabetic neuropathy.


Asunto(s)
Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Animales , Glucemia , Neuropatías Diabéticas/patología , Inmunohistoquímica , Neuronas/metabolismo , Neuroprotección , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Ratas , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura
2.
Kidney Int ; 100(4): 850-869, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34252449

RESUMEN

Adverse effects of calcineurin inhibitors (CNI), such as hypertension, hyperkalemia, acidosis, hypomagnesemia and hypercalciuria, have been linked to dysfunction of the distal convoluted tubule (DCT). To test this, we generated a mouse model with an inducible DCT-specific deletion of the calcineurin regulatory subunit B alpha (CnB1-KO). Three weeks after CnB1 deletion, these mice exhibited hypomagnesemia and acidosis, but no hypertension, hyperkalemia or hypercalciuria. Consistent with the hypomagnesemia, CnB1-KO mice showed a downregulation of proteins implicated in DCT magnesium transport, including TRPM6, CNNM2, SLC41A3 and parvalbumin but expression of calcium channel TRPV5 in the kidney was unchanged. The abundance of the chloride/bicarbonate exchanger pendrin was increased, likely explaining the acidosis. Plasma aldosterone levels, kidney renin expression, abundance of phosphorylated sodium chloride-cotransporter and abundance of the epithelial sodium channel were similar in control and CnB1-KO mice, consistent with a normal sodium balance. Long-term potassium homeostasis was maintained in CnB1-KO mice, but in-vivo and ex-vivo experiments indicated that CnB1 contributes to acute regulation of potassium balance and sodium chloride-cotransporter. Tacrolimus treatment of control and CnB1-KO mice demonstrated that CNI-related hypomagnesemia is linked to impaired calcineurin-signaling in DCT, while hypocalciuria and hyponatremia occur independently of CnB1 in DCT. Transcriptome and proteome analyses of isolated DCTs demonstrated that CnB1 deletion impacts the expression of several DCT-specific proteins and signaling pathways. Thus, our data support a critical role of calcineurin for DCT function and provide novel insights into the pathophysiology of CNI side effects and involved molecular players in the DCT.


Asunto(s)
Acidosis , Magnesio , Animales , Calcineurina/genética , Túbulos Renales Distales , Ratones , Proteoma/genética , Transcriptoma
3.
Kidney Int ; 97(6): 1208-1218, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32299681

RESUMEN

The basolateral potassium channel KCNJ10 (Kir4.1), is expressed in the renal distal convoluted tubule and controls the activity of the thiazide-sensitive sodium chloride cotransporter. Loss-of-function mutations of KCNJ10 cause EAST/SeSAME syndrome with salt wasting and severe hypokalemia. KCNJ10 is also expressed in the principal cells of the collecting system. However, its pathophysiological role in this segment has not been studied in detail. To address this, we generated the mouse model AQP2cre:Kcnj10flox/flox with a deletion of Kcnj10 specifically in the collecting system (collecting system-Kcnj10-knockout). Collecting system-Kcnj10-knockout mice responded normally to standard and high potassium diet. However, this knockout exhibited a higher kaliuresis and lower plasma potassium than control mice when treated with thiazide diuretics. Likewise, collecting systemKcnj10-knockout displayed an inadequately high kaliuresis and renal sodium retention upon dietary potassium restriction. In this condition, these knockout mice became hypokalemic due to insufficient downregulation of the epithelial sodium channel (ENaC) and the renal outer medullary potassium channel (ROMK) in the collecting system. Consistently, the phenotype of collecting system-Kcnj10-knockout was fully abrogated by ENaC inhibition with amiloride and ameliorated by genetic inactivation of ROMK in the collecting system. Thus, KCNJ10 in the collecting system contributes to the renal control of potassium homeostasis by regulating ENaC and ROMK. Hence, impaired KCNJ10 function in the collecting system predisposes for thiazide and low potassium diet-induced hypokalemia and likely contributes to the pathophysiology of renal potassium loss in EAST/SeSAME syndrome.


Asunto(s)
Hipopotasemia , Canales de Potasio de Rectificación Interna , Animales , Dieta , Canales Epiteliales de Sodio , Hipopotasemia/inducido químicamente , Hipopotasemia/genética , Ratones , Ratones Noqueados , Potasio , Canales de Potasio de Rectificación Interna/genética , Tiazidas
4.
J Gerontol A Biol Sci Med Sci ; 70(6): 665-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25136000

RESUMEN

Aging impairs angiogenic capacity of cerebromicrovascular endothelial cells (CMVECs) promoting microvascular rarefaction, but the underlying mechanisms remain elusive. PACAP is an evolutionarily conserved neuropeptide secreted by endothelial cells and neurons, which confers important antiaging effects. To test the hypothesis that age-related changes in autocrine PACAP signaling contributes to dysregulation of endothelial angiogenic capacity, primary CMVECs were isolated from 3-month-old (young) and 24-month-old (aged) Fischer 344 x Brown Norway rats. In aged CMVECs, expression of PACAP was decreased, which was associated with impaired capacity to form capillary-like structures, impaired adhesiveness to collagen (assessed using electric cell-substrate impedance sensing [ECIS] technology), and increased apoptosis (caspase3 activity) when compared with young cells. Overexpression of PACAP in aged CMVECs resulted in increased formation of capillary-like structures, whereas it did not affect cell adhesion. Treatment with recombinant PACAP also significantly increased endothelial tube formation and inhibited apoptosis in aged CMVECs. In young CMVECs shRNA knockdown of autocrine PACAP expression significantly impaired tube formation capacity, mimicking the aging phenotype. Cellular and mitochondrial reactive oxygen species production (dihydroethidium and MitoSox fluorescence, respectively) were increased in aged CMVECs and were unaffected by PACAP. Collectively, PACAP exerts proangiogenic effects and age-related dysregulation of autocrine PACAP signaling may contribute to impaired angiogenic capacity of CMVECs in aging.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Animales , Apoptosis , Caspasa 3/metabolismo , Adhesión Celular , Movimiento Celular , Células Cultivadas , Regulación hacia Abajo , Células Endoteliales/patología , Técnicas de Silenciamiento del Gen , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344 , Especies Reactivas de Oxígeno/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
J Mol Neurosci ; 54(3): 543-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24994541

RESUMEN

Administration of the long form (38 amino acids) of pituitary adenylate cyclase-activating polypeptide (PACAP38) into the central nervous system causes hyperthermia, suggesting that PACAP38 plays a role in the regulation of deep body temperature (T b). In this study, we investigated the thermoregulatory role of PACAP38 in details. First, we infused PACAP38 intracerebroventricularly to rats and measured their T b and autonomic thermoeffector responses. We found that central PACAP38 infusion caused dose-dependent hyperthermia, which was brought about by increased thermogenesis and tail skin vasoconstriction. Compared to intracerebroventricular administration, systemic (intravenous) infusion of the same dose of PACAP38 caused significantly smaller hyperthermia, indicating a central site of action. We then investigated the thermoregulatory phenotype of mice lacking the Pacap gene (Pacap (-/-)). Freely moving Pacap (-/-) mice had higher locomotor activity throughout the day and elevated deep T b during the light phase. When the Pacap (-/-) mice were loosely restrained, their metabolic rate and T b were lower compared to their wild-type littermates. We conclude that PACAP38 causes hyperthermia via activation of the autonomic cold-defense thermoeffectors through central targets. Pacap (-/-) mice express hyperkinesis, which is presumably a compensatory mechanism, because under restrained conditions, these mice are hypometabolic and hypothermic compared to controls.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Termogénesis/efectos de los fármacos , Animales , Femenino , Fiebre/genética , Fiebre/metabolismo , Masculino , Ratones , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Ratas , Ratas Wistar
6.
Am J Physiol Heart Circ Physiol ; 307(3): H292-306, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24906921

RESUMEN

In rodents, moderate caloric restriction (CR) without malnutrition exerts significant cerebrovascular protective effects, improving cortical microvascular density and endothelium-dependent vasodilation, but the underlying cellular mechanisms remain elusive. To elucidate the persisting effects of CR on cerebromicrovascular endothelial cells (CMVECs), primary CMVECs were isolated from young (3 mo old) and aged (24 mo old) ad libitum-fed and aged CR F344xBN rats. We found an age-related increase in cellular and mitochondrial oxidative stress, which is prevented by CR. Expression and transcriptional activity of Nrf2 are both significantly reduced in aged CMVECs, whereas CR prevents age-related Nrf2 dysfunction. Expression of miR-144 was upregulated in aged CMVECs, and overexpression of miR-144 significantly decreased expression of Nrf2 in cells derived from both young animals and aged CR rats. Overexpression of a miR-144 antagomir in aged CMVECs significantly decreases expression of miR-144 and upregulates Nrf2. We found that CR prevents age-related impairment of angiogenic processes, including cell proliferation, adhesion to collagen, and formation of capillary-like structures and inhibits apoptosis in CMVECs. CR also exerts significant anti-inflammatory effects, preventing age-related increases in the transcriptional activity of NF-κB and age-associated pro-inflammatory shift in the endothelial secretome. Characterization of CR-induced changes in miRNA expression suggests that they likely affect several critical functions in endothelial cell homeostasis. The predicted regulatory effects of CR-related differentially expressed miRNAs in aged CMVECs are consistent with the anti-aging endothelial effects of CR observed in vivo. Collectively, we find that CR confers persisting anti-oxidative, pro-angiogenic, and anti-inflammatory cellular effects, preserving a youthful phenotype in rat cerebromicrovascular endothelial cells, suggesting that through these effects CR may improve cerebrovascular function and prevent vascular cognitive impairment.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/irrigación sanguínea , Restricción Calórica , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Inflamación/prevención & control , MicroARNs/metabolismo , Microvasos/metabolismo , Neovascularización Fisiológica , Estrés Oxidativo , Factores de Edad , Envejecimiento/genética , Envejecimiento/inmunología , Animales , Células Cultivadas , Cruzamientos Genéticos , Células Endoteliales/inmunología , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , MicroARNs/genética , Microvasos/inmunología , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fenotipo , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344 , Transcripción Genética , Transfección
7.
J Mol Neurosci ; 54(3): 300-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24535559

RESUMEN

Diabetic nephropathy is the leading cause of end-stage renal failure and accounts for 30-40 % of patients entering renal transplant programmes. The nephroprotective effects of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP38) against diabetes have been shown previously, but the molecular mechanisms responsible for these effects remain unknown. In the present study, we showed that PACAP treatment counteracted the diabetes-induced increase in the level of the proapoptotic pp38MAPK and cleaved caspase-3 and also decreased the p60 subunit of NFκB. The examined antiapoptotic factors, including pAkt and pERK1/2, showed a slight increase in the diabetic kidneys, while PACAP treatment resulted in a notable elevation of these proteins. PCR and Western blot revealed the downregulation of fibrotic markers, like collagen IV and TGF-ß1 in the kidney. PACAP treatment resulted in increased expression of the antioxidant glutathione. We conclude that the nephroprotective effect of PACAP in diabetes is, at least partly, due to its antiapoptotic, antifibrotic and antioxidative effect in addition to the previously described antiinflammatory effect.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Riñón/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Animales , Apoptosis , Caspasa 3/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Glutatión/metabolismo , Riñón/metabolismo , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
J Mol Neurosci ; 48(3): 631-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22539193

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread occurrence in the nervous system and peripheral organs, including the mammary gland. Previously, we have shown that PACAP38 is present in the human milk at higher levels than in respective blood samples. However, it is not known how PACAP levels and the expression of PAC1 receptor change during lactation. Therefore, the aim of our study was to investigate PACAP38-like immunoreactivity (PACAP38-LI) in human colostrums and transitional and mature milk during lactation and to compare the expression of PAC1 receptors in lactating and non-lactating mammary glands. We found that PACAP38-LI was significantly higher in human colostrum samples than in the transitional and mature milk. PACAP38-LI did not show any significant changes within the first 10-month period of lactation, but a significant increase was observed thereafter, up to the examined 17th month. Weak expression of PAC1 receptors was detected in non-lactating sheep and human mammary glands, but a significant increase was observed in the lactating sheep samples. In summary, the present study is the first to show changes of PACAP levels in human milk during lactation. The presence of PACAP in the milk suggests a potential role in the development of newborn, while the increased expressions of PAC1 receptors on lactating breast may indicate a PACAP38/PAC1 interaction in the mammary gland during lactation.


Asunto(s)
Mama/química , Calostro/química , Lactancia/fisiología , Glándulas Mamarias Animales/química , Leche Humana/química , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/análisis , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/análisis , Oveja Doméstica/fisiología , Animales , Mama/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Glándulas Mamarias Animales/fisiología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/biosíntesis , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Especificidad de la Especie
9.
Cell Tissue Res ; 348(1): 37-46, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22350850

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with highly potent neurotrophic and neuroprotective effects. PACAP and its receptors occur in the retina and PACAP has been applied in animal models of metabolic retinal disorders to reduce structural and functional damage. Furthermore, PACAP has been implicated as a potential anti-diabetic peptide. Our aim has been to investigate, by using a complex morphological, immunochemical and molecular biological approach, whether PACAP attenuates diabetic retinopathy. Diabetes was induced in rats with a single streptozotocin injection. PACAP was injected intravitreally into one eye (100 pmol) three times during the last week of a 3-week survival period. Retinas were processed for the following procedures: routine histology, immunohistochemistry (single and double labeling, whole-mount), quantitative reverse transcription with the polymerase chain reaction and Western blotting. Cone photoreceptors and dopaminergic amacrine and ganglion cells degenerated in diabetic retinas and glial fibrillary acidic protein were upregulated in Müller glial cells. The number of cones, the length of their outer segments and the cell number in the ganglion cell layer were decreased. PACAP ameliorated these structural changes. Moreover, PACAP increased the levels of PAC1-receptor and tyrosine-hydroxylase as detected by molecular biological methods. Thus, PACAP has significant protective effects in the diabetic retina. PACAP treatment attenuates neuronal cell loss in diabetic retinopathy, the protective effects of PACAP probably being mediated through the activation of PAC1-receptor. These results suggest that PACAP has a therapeutic potential in diabetic retinopathy.


Asunto(s)
Retinopatía Diabética/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Animales , Western Blotting , Retinopatía Diabética/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico , Sustancias Protectoras/farmacología , Ratas , Ratas Wistar , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Retina/efectos de los fármacos , Retina/enzimología , Retina/patología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Tirosina 3-Monooxigenasa/metabolismo
10.
Eur J Endocrinol ; 160(4): 561-5, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19174531

RESUMEN

OBJECTIVE: Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide widely distributed throughout the body. It is involved in the regulation of various physiological and pathophysiological processes, such as reproduction, thermoregulation, motor activity, brain development, neuronal survival, inflammation and pain. Since little is known about its distribution in humans, our aim was to examine PACAP-38 in human plasma. Furthermore, based on the presence of vasoactive intestinal peptide, structurally the closest to PACAP, in milk and PACAP and its receptors in the mammary gland, our aim was to study PACAP-38 in human milk. DESIGN AND METHODS: The presence of PACAP-38 was determined by mass spectrometry in plasma samples from healthy male and female volunteers (age: 20-40), as well as in plasma and milk samples from lactating women (age: 20-35). PACAP concentration was measured with a specific and sensitive RIA. RESULTS: Our results revealed that PACAP-38 is present in human plasma, its concentration is relatively stable in healthy volunteers and it is not significantly altered by gender, age, food intake or hormonal cycle in females. However, PACAP-38 plasma levels significantly increased in lactating women having 1-6 month-old babies. Moreover, this study is the first which provides evidence for the presence of PACAP-38 in the human milk with levels 5-20-fold greater in the milk whey than in the respective plasma samples. CONCLUSIONS: We found PACAP-38 in human plasma and its increase during the first 6 months of the lactation period. A prominent, nearly 10-fold higher concentration of this peptide was detected in human milk. Based on the literature, several important actions of milk-derived PACAP-38 can be suggested such as mammary gland proliferation, nutrient transfer as well as regulation of growth/differentiation of certain tissues of the neonates. The novelty of the present descriptive data provides a basis for further investigations on the mechanism of PACAP-38 secretion in human milk and its functional significance.


Asunto(s)
Leche Humana/química , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Adulto , Envejecimiento/psicología , Secuencia de Aminoácidos , Mama/citología , Mama/crecimiento & desarrollo , Ingestión de Alimentos/fisiología , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Datos de Secuencia Molecular , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/sangre , Radioinmunoensayo , Caracteres Sexuales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA