Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496433

RESUMEN

Epigenetic control of gene expression is crucial for maintaining gene regulation. Sin3 is an evolutionarily conserved repressor protein complex mainly associated with histone deacetylase (HDAC) activity. A large number of proteins are part of Sin3/HDAC complexes, and the function of most of these members remains poorly understood. SAP25, a previously identified Sin3A associated protein of 25 kDa, has been proposed to participate in regulating gene expression programs involved in the immune response but the exact mechanism of this regulation is unclear. SAP25 is not expressed in HEK293 cells, which hence serve as a natural knockout system to decipher the molecular functions uniquely carried out by this Sin3/HDAC subunit. Using molecular, proteomic, protein engineering, and interaction network approaches, we show that SAP25 interacts with distinct enzymatic and regulatory protein complexes in addition to Sin3/HDAC. While the O-GlcNAc transferase (OGT) and the TET1 /TET2/TET3 methylcytosine dioxygenases have been previously linked to Sin3/HDAC, in HEK293 cells, these interactions were only observed in the affinity purification in which an exogenously expressed SAP25 was the bait. Additional proteins uniquely recovered from the Halo-SAP25 pull-downs included the SCF E3 ubiquitin ligase complex SKP1/FBXO3/CUL1 and the ubiquitin carboxyl-terminal hydrolase 11 (USP11), which have not been previously associated with Sin3/HDAC. Finally, we use mutational analysis to demonstrate that distinct regions of SAP25 participate in its interaction with USP11, OGT/TETs, and SCF(FBXO3).) These results suggest that SAP25 may function as an adaptor protein to coordinate the assembly of different enzymatic complexes to control Sin3/HDAC-mediated gene expression.

2.
Elife ; 122023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099650

RESUMEN

Ribosome biogenesis is a vital and highly energy-consuming cellular function occurring primarily in the nucleolus. Cancer cells have an elevated demand for ribosomes to sustain continuous proliferation. This study evaluated the impact of existing anticancer drugs on the nucleolus by screening a library of anticancer compounds for drugs that induce nucleolar stress. For a readout, a novel parameter termed 'nucleolar normality score' was developed that measures the ratio of the fibrillar center and granular component proteins in the nucleolus and nucleoplasm. Multiple classes of drugs were found to induce nucleolar stress, including DNA intercalators, inhibitors of mTOR/PI3K, heat shock proteins, proteasome, and cyclin-dependent kinases (CDKs). Each class of drugs induced morphologically and molecularly distinct states of nucleolar stress accompanied by changes in nucleolar biophysical properties. In-depth characterization focused on the nucleolar stress induced by inhibition of transcriptional CDKs, particularly CDK9, the main CDK that regulates RNA Pol II. Multiple CDK substrates were identified in the nucleolus, including RNA Pol I- recruiting protein Treacle, which was phosphorylated by CDK9 in vitro. These results revealed a concerted regulation of RNA Pol I and Pol II by transcriptional CDKs. Our findings exposed many classes of chemotherapy compounds that are capable of inducing nucleolar stress, and we recommend considering this in anticancer drug development.


Ribosomes are cell structures within a compartment called the nucleolus that are required to make proteins, which are essential for cell function. Due to their uncontrolled growth and division, cancer cells require many proteins and therefore have a particularly high demand for ribosomes. Due to this, some anti-cancer drugs deliberately target the activities of the nucleolus. However, it was not clear if anti-cancer drugs with other targets also disrupt the nucleolus, which may result in side effects. Previously, it had been difficult to study how nucleoli work, partly because in human cells they vary naturally in shape, size, and number. Potapova et al. used fluorescent microscopy to develop a new way of assessing nucleoli based on the location and ratio of certain proteins. These measurements were used to calculate a "nucleolar normality score". Potapova et al. then tested over a thousand anti-cancer drugs in healthy and cancerous human cells. Around 10% of the tested drugs changed the nucleolar normality score when compared to placebo treatment, indicating that they caused nucleolar stress. For most of these drugs, the nucleolus was not the intended target, suggesting that disrupting it was an unintended side effect. Drugs inhibiting proteins called cyclin-dependent kinases caused the most drastic changes in the size and shape of nucleoli, disrupting them completely. These kinases are known to be involved in activating enzymes required for general transcription. Potapova et al. showed that they also are involved in production of ribosomal RNA, revealing an additional role in coordinating ribosome assembly. Taken together, the findings suggest that evaluating the effect of new anti-cancer drugs on the nucleolus could help to develop future treatments with less toxic side effects. The experiments also reveal new avenues for researching how cyclin-dependent kinases control the production of RNA more generally.


Asunto(s)
Antineoplásicos , Nucléolo Celular , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Ribosomas/metabolismo , ARN Polimerasa I/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , ARN Polimerasa II/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , ARN/metabolismo
3.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778327

RESUMEN

WDR76 is a multifunctional protein involved in many cellular functions. With a diverse and complicated protein interaction network, dissecting the structure and function of specific WDR76 complexes is needed. We previously demonstrated the ability of the Serial Capture Affinity Purification (SCAP) method to isolate specific complexes by introducing two proteins of interest as baits at the same time. Here, we applied SCAP to dissect a subpopulation of WDR76 in complex with SPIN1, a histone marker reader that specifically recognizes trimethylated histone H3 lysine4 (H3K4me3). In contrast to the SCAP analysis of the SPIN1:SPINDOC complex, H3K4me3 was copurified with the WDR76:SPIN1 complex. In combination with crosslinking mass spectrometry, we built an integrated structural model of the complex which revealed that SPIN1 recognized the H3K4me3 epigenetic mark while interacting with WDR76. Lastly, interaction network analysis of copurifying proteins revealed the potential role of the WDR76:SPIN1 complex in the DNA damage response. Teaser: In contrast to the SPINDOC/SPIN1 complex, analyses reveal that the WDR76/SPIN1 complex interacts with core histones and is involved in DNA damage.

4.
PLoS One ; 16(11): e0259128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34788285

RESUMEN

Breast Cancer Metastasis Suppressor 1 (BRMS1) expression is associated with longer patient survival in multiple cancer types. Understanding BRMS1 functionality will provide insights into both mechanism of action and will enhance potential therapeutic development. In this study, we confirmed that the C-terminus of BRMS1 is critical for metastasis suppression and hypothesized that critical protein interactions in this region would explain its function. Phosphorylation status at S237 regulates BRMS1 protein interactions related to a variety of biological processes, phenotypes [cell cycle (e.g., CDKN2A), DNA repair (e.g., BRCA1)], and metastasis [(e.g., TCF2 and POLE2)]. Presence of S237 also directly decreased MDA-MB-231 breast carcinoma migration in vitro and metastases in vivo. The results add significantly to our understanding of how BRMS1 interactions with Sin3/HDAC complexes regulate metastasis and expand insights into BRMS1's molecular role, as they demonstrate BRMS1 C-terminus involvement in distinct protein-protein interactions.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Neoplasias , Proteínas Represoras , Complejo Correpresor Histona Desacetilasa y Sin3
5.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34465625

RESUMEN

The SNF2 family ATPase Amplified in Liver Cancer 1 (ALC1) is the only chromatin remodeling enzyme with a poly(ADP-ribose) (PAR) binding macrodomain. ALC1 functions together with poly(ADP-ribose) polymerase PARP1 to remodel nucleosomes. Activation of ALC1 cryptic ATPase activity and the subsequent nucleosome remodeling requires binding of its macrodomain to PAR chains synthesized by PARP1 and NAD+ A key question is whether PARP1 has a role(s) in ALC1-dependent nucleosome remodeling beyond simply synthesizing the PAR chains needed to activate the ALC1 ATPase. Here, we identify PARP1 separation-of-function mutants that activate ALC1 ATPase but do not support nucleosome remodeling by ALC1. Investigation of these mutants has revealed multiple functions for PARP1 in ALC1-dependent nucleosome remodeling and provides insights into its multifaceted role in chromatin remodeling.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Reparación del ADN , Humanos
6.
Proc Natl Acad Sci U S A ; 117(50): 31861-31870, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257578

RESUMEN

Streamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here we describe serial capture affinity purification (SCAP), in which two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multistep affinity enrichment of specific protein complexes. The multifunctional capabilities of this protein-tagging system also permit in vivo validation of interactions using acceptor photobleaching Förster resonance energy transfer and fluorescence cross-correlation spectroscopy quantitative imaging. By coupling SCAP to cross-linking mass spectrometry, an integrative structural model of the complex of interest can be generated. We demonstrate this approach using the Spindlin1 and SPINDOC protein complex, culminating in a structural model with two SPINDOC molecules docked on one SPIN1 molecule. In this model, SPINDOC interacts with the SPIN1 interface previously shown to bind a lysine and arginine methylated sequence of histone H3. Our approach combines serial affinity purification, live cell imaging, and cross-linking mass spectrometry to build integrative structural models of protein complexes.


Asunto(s)
Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Modelos Moleculares , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/aislamiento & purificación , Proteínas Co-Represoras/metabolismo , Estudios de Factibilidad , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Microscopía Intravital , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/química , Fosfoproteínas/genética , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
7.
Mol Cell Proteomics ; 19(9): 1468-1484, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32467258

RESUMEN

Despite the continued analysis of HDAC inhibitors in clinical trials, the heterogeneous nature of the protein complexes they target limits our understanding of the beneficial and off-target effects associated with their application. Among the many HDAC protein complexes found within the cell, Sin3 complexes are conserved from yeast to humans and likely play important roles as regulators of transcriptional activity. The presence of two Sin3 paralogs in humans, SIN3A and SIN3B, may result in a heterogeneous population of Sin3 complexes and contributes to our poor understanding of the functional attributes of these complexes. Here, we profile the interaction networks of SIN3A and SIN3B to gain insight into complex composition and organization. In accordance with existing data, we show that Sin3 paralog identity influences complex composition. Additionally, chemical cross-linking MS identifies domains that mediate interactions between Sin3 proteins and binding partners. The characterization of rare SIN3B proteoforms provides additional evidence for the existence of conserved and divergent elements within human Sin3 proteins. Together, these findings shed light on both the shared and divergent properties of human Sin3 proteins and highlight the heterogeneous nature of the complexes they organize.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Secuencia de Aminoácidos , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatografía Liquida , Histona Desacetilasa 1/metabolismo , Humanos , Familia de Multigenes , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteómica , Proteínas Recombinantes , Proteínas Represoras/genética , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Espectrometría de Masas en Tándem
8.
Cell Rep ; 31(2): 107516, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294434

RESUMEN

Sin3/HDAC complexes function by deacetylating histones, condensing chromatin, and modulating gene expression. Although components used to build these complexes have been well defined, we still have only a limited understanding of the structure of the Sin3/HDAC subunits assembled around the scaffolding protein SIN3A. To characterize the spatial arrangement of Sin3 subunits, we combined Halo affinity capture, chemical crosslinking, and high-resolution mass spectrometry (XL-MS) to determine intersubunit distance constraints, identifying 66 interprotein and 63 self-crosslinks for 13 Sin3 subunits. Having assessed crosslink authenticity by mapping self-crosslinks onto existing structures, we used distance restraints from interprotein crosslinks to guide assembly of a Sin3 complex substructure. We identified the relative positions of subunits SAP30L, HDAC1, SUDS3, HDAC2, and ING1 around the SIN3A scaffold. The architecture of this subassembly suggests that multiple factors have space to assemble to collectively influence the behavior of the catalytic subunit HDAC1.


Asunto(s)
Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/fisiología , Células HEK293 , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Espectrometría de Masas/métodos , Proteínas Represoras/metabolismo
9.
Methods Enzymol ; 626: 23-40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31606077

RESUMEN

The reversible acetylation of histones has a profound influence on transcriptional status. Histone acetyltransferases catalyze the addition of these chemical modifications to histone lysine residues. Conversely, histone deacetylases (HDACs) catalyze the removal of these acetyl groups from histone lysine residues. As modulators of transcription, HDACs have found themselves as targets of several FDA-approved chemotherapeutic compounds which aim to inhibit enzyme activity. The ongoing efforts to develop targeted and isoform-specific HDAC inhibitors necessitates tools to study these modifications and the enzymes that maintain an equilibrium of these modifications. In this chapter, we present an optimized workflow for the isolation of recombinant protein and subsequent assay of class I HDAC activity. We demonstrate the application of this assay by assessing the activities of recombinant HDAC1, HDAC2, and SIN3B. This assay system utilizes readily available reagents and can be used to assess the activity and responsiveness of class I HDAC complexes to HDAC inhibitors.


Asunto(s)
Pruebas de Enzimas/métodos , Histona Desacetilasa 1/metabolismo , Animales , Evaluación Preclínica de Medicamentos/métodos , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/aislamiento & purificación , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
10.
Sci Rep ; 8(1): 13712, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209338

RESUMEN

HDAC1 and HDAC2 are components of several corepressor complexes (NuRD, Sin3, CoREST and MiDAC) that regulate transcription by deacetylating histones resulting in a more compact chromatin environment. This limits access of transcriptional machinery to genes and silences transcription. While using an AP-MS approach to map HDAC1/2 protein interaction networks, we noticed that N-terminally tagged versions of HDAC1 and HDAC2 did not assemble into HDAC corepressor complexes as expected, but instead appeared to be stalled with components of the prefoldin-CCT chaperonin pathway. These N-terminally tagged HDACs were also catalytically inactive. In contrast to the N-terminally tagged HDACs, C-terminally tagged HDAC1 and HDAC2 captured complete histone deacetylase complexes and the purified proteins had deacetylation activity that could be inhibited by SAHA (Vorinostat), a Class I/II HDAC inhibitor. This tag-mediated reprogramming of the HDAC1/2 protein interaction network suggests a mechanism whereby HDAC1 is first loaded into the CCT complex by prefoldin to complete folding, and then assembled into active, functional HDAC complexes. Imaging revealed that the prefoldin subunit VBP1 colocalises with nuclear HDAC1, suggesting that delivery of HDAC1 to the CCT complex happens in the nucleus.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Chaperonas Moleculares/metabolismo , Línea Celular , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Represoras/metabolismo
11.
Mol Cell Proteomics ; 17(7): 1432-1447, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29599190

RESUMEN

Although a variety of affinity purification mass spectrometry (AP-MS) strategies have been used to investigate complex interactions, many of these are susceptible to artifacts because of substantial overexpression of the exogenously expressed bait protein. Here we present a logical and systematic workflow that uses the multifunctional Halo tag to assess the correct localization and behavior of tagged subunits of the Sin3 histone deacetylase complex prior to further AP-MS analysis. Using this workflow, we modified our tagging/expression strategy with 21.7% of the tagged bait proteins that we constructed, allowing us to quickly develop validated reagents. Specifically, we apply the workflow to map interactions between stably expressed versions of the Sin3 subunits SUDS3, SAP30, or SAP30L and other cellular proteins. Here we show that the SAP30 and SAP30L paralogues strongly associate with the core Sin3 complex, but SAP30L has unique associations with the proteasome and the myelin sheath. Next, we demonstrate an advancement of the complex NSAF (cNSAF) approach, in which normalization to the scaffold protein SIN3A accounts for variations in the proportion of each bait capturing Sin3 complexes and allows a comparison among different baits capturing the same protein complex. This analysis reveals that although the Sin3 subunit SUDS3 appears to be used in both SIN3A and SIN3B based complexes, the SAP30 subunit is not used in SIN3B based complexes. Intriguingly, we do not detect the Sin3 subunits SAP18 and SAP25 among the 128 high-confidence interactions identified, suggesting that these subunits may not be common to all versions of the Sin3 complex in human cells. This workflow provides the framework for building validated reagents to assemble quantitative interaction networks for chromatin remodeling complexes and provides novel insights into focused protein interaction networks.


Asunto(s)
Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/métodos , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Flujo de Trabajo , Línea Celular , Células HEK293 , Humanos , Unión Proteica , Subunidades de Proteína/metabolismo
12.
Mol Biosyst ; 13(1): 42-55, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27891540

RESUMEN

Understanding the complexity of cancer biology requires extensive information about the cancer proteome over the course of the disease. The recent advances in mass spectrometry-based proteomics technologies have led to the accumulation of an incredible amount of such proteomic information. This information allows us to identify protein signatures or protein biomarkers, which can be used to improve cancer diagnosis, prognosis and treatment. For example, mass spectrometry-based proteomics has been used in breast cancer research for over two decades to elucidate protein function. Breast cancer is a heterogeneous group of diseases with distinct molecular features that are reflected in tumour characteristics and clinical outcomes. Compared with all other subtypes of breast cancer, triple-negative breast cancer is perhaps the most distinct in nature and heterogeneity. In this review, we provide an introductory overview of the application of advanced proteomic technologies to triple-negative breast cancer research.


Asunto(s)
Espectrometría de Masas , Proteoma , Proteómica , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Humanos , Espectrometría de Masas/métodos , Proteómica/métodos , Investigación , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/etiología
13.
Mol Cell ; 64(2): 282-293, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720645

RESUMEN

RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.


Asunto(s)
Algoritmos , Anotación de Secuencia Molecular , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/clasificación , ARN/química , Animales , Sitios de Unión , Núcleo Celular/química , Núcleo Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expresión Génica , Ontología de Genes , Células HEK293 , Humanos , Motivos de Nucleótidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Programas Informáticos , Dedos de Zinc
14.
Mol Cell Proteomics ; 15(11): 3435-3449, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27609421

RESUMEN

The NF-κB family of transcription factors is pivotal in controlling cellular responses to environmental stresses; abnormal nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling features in many autoimmune diseases and cancers. Several components of the NF-κB signaling pathway have been reported to interact with the protein TNIP2 (also known as ABIN2), and TNIP2 can both positively and negatively regulate NF-κB- dependent transcription of target genes. However, the function of TNIP2 remains elusive and the cellular machinery associating with TNIP2 has not been systematically defined. Here we first used a broad MudPIT/Halo Affinity Purification Mass Spectrometry (AP-MS) approach to map the network of proteins associated with the NF-κB transcription factors, and establish TNIP2 as an NF-κB network hub protein. We then combined AP-MS with biochemical approaches in a more focused study of truncated and mutated forms of TNIP2 to map protein associations with distinct regions of TNIP2. NF-κB interacted with the N-terminal region of TNIP2. A central region of TNIP2 interacted with the endosomal sorting complex ESCRT-I via its TSG101 subunit, a protein essential for HIV-1 budding, and a single point mutant in TNIP2 disrupted this interaction. The major gene ontology category for TNIP2 associated proteins was mRNA metabolism, and several of these associations, like KHDRBS1, were lost upon depletion of RNA. Given the major association of TNIP2 with mRNA metabolism proteins, we analyzed the RNA content of affinity purified TNIP2 using RNA-Seq. Surprisingly, a specific limited number of mRNAs was associated with TNIP2. These RNAs were enriched for transcription factor binding, transcription factor cofactor activity, and transcription regulator activity. They included mRNAs of genes in the Sin3A complex, the Mediator complex, JUN, HOXC6, and GATA2. Taken together, our findings suggest an expanded role for TNIP2, establishing a link between TNIP2, cellular transport machinery, and RNA transcript processing.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , FN-kappa B/metabolismo , Mapeo de Interacción de Proteínas/métodos , Análisis de Secuencia de ARN/métodos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas/métodos , Mutación , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
15.
Mol Cell Proteomics ; 15(3): 960-74, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26831523

RESUMEN

The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Eliminación de Gen , Redes Reguladoras de Genes , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina , Ontología de Genes , Genoma Fúngico , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Sci Rep ; 5: 8530, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25704442

RESUMEN

A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.


Asunto(s)
Clonación Molecular/métodos , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromatografía de Afinidad , Células HEK293 , Humanos , Espectrometría de Masas , Sistemas de Lectura Abierta/genética , Dominios y Motivos de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 13/análisis , Proteína Tirosina Fosfatasa no Receptora Tipo 13/química , Proteína Tirosina Fosfatasa no Receptora Tipo 13/aislamiento & purificación , Proteínas/química , Proteínas/aislamiento & purificación , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación
17.
Mol Cell Proteomics ; 13(6): 1510-22, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24722732

RESUMEN

The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBß, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.


Asunto(s)
Mapas de Interacción de Proteínas/genética , Proteómica , Factor de Transcripción ReIA/biosíntesis , Factores de Transcripción/biosíntesis , Citoplasma/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Espectrometría de Masas , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/genética
18.
Protein Expr Purif ; 86(2): 105-19, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23017740

RESUMEN

Characterizing protein complexes and identifying their subunits promote our understanding of the machinery involved in many in vivo processes. Proteomic studies can identify a protein's binding partners, and this can provide insight into how protein complexes function and how they are regulated. In addition, the composition of a protein complex within an organism can be investigated as a function of time, as a function of location, or during the response of an organism to a change in environment. There are many ways to isolate a complex and identify its constituents. This review will focus on complex isolation using affinity purification and will address issues that biochemists should bear in mind as they isolate protein complexes for mass spectrometric analysis by multidimensional protein identification technology (MudPIT)(1). Protein complex analysis by mass spectrometry frequently involves the collaborative efforts of biochemists or biologists who purify protein complexes and proteomic specialists who analyze the samples - for fruitful collaborations it can be helpful for these specialized groups to be acquainted with basic principles of their collaborator's discipline. With this in mind, we first review the variety of affinity purification methods which might be considered for preparing complexes for analysis, and then provide brief primers on the principles of MudPIT mass spectrometry and data analysis. From this foundation, we then discuss how these techniques are integrated and optimized and suggest salient points to consider when preparing purified samples for protein identification, performing mass spectrometry runs, and analyzing the resulting data.


Asunto(s)
Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Fragmentos de Péptidos/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Detergentes/química , Histidina/química , Datos de Secuencia Molecular , Oligopéptidos/química , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Péptidos/química , Subunidades de Proteína , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo
19.
Cell ; 146(1): 92-104, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729782

RESUMEN

Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.


Asunto(s)
Transactivadores/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Complejo Mediador , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo
20.
Proc Natl Acad Sci U S A ; 106(49): 20705-10, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19920177

RESUMEN

The proteasome degrades proteins modified by polyubiquitylation, so correctly controlled ubiquitylation is crucial to avoid unscheduled proteolysis of essential proteins. The mechanism regulating proteolysis of RNAPII has been controversial since two distinct ubiquitin ligases (E3s), Rsp5 (and its human homologue NEDD4) and Elongin-Cullin complex, have both been shown to be required for its DNA-damage-induced polyubiquitylation. Here we show that these E3s work sequentially in a two-step mechanism. First, Rsp5 adds mono-ubiquitin, or sometimes a ubiquitin chain linked via ubiquitin lysine 63 that does not trigger proteolysis. When produced, the K63 chain can be trimmed to mono-ubiquitylation by an Rsp5-associated ubiquitin protease, Ubp2. Based on this mono-ubiquitin moiety on RNAPII, an Elc1/Cul3 complex then produces a ubiquitin chain linked via lysine 48, which can trigger proteolysis. Likewise, for correct polyubiquitylation of human RNAPII, NEDD4 cooperates with the ElonginA/B/C-Cullin 5 complex. These data indicate that RNAPII polyubiquitylation requires cooperation between distinct, sequentially acting ubiquitin ligases, and raise the intriguing possibility that other members of the large and functionally diverse family of NEDD4-like ubiquitin ligases also require the assistance of a second E3 when targeting proteins for degradation.


Asunto(s)
Poliubiquitina/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Lisina/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA