Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
GigaByte ; 2023: gigabyte80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153490

RESUMEN

Antibiotic resistance is increasing at an alarming rate, and three related mycobacteria are sources of widespread infections in humans. According to the World Health Organization, Mycobacterium leprae, which causes leprosy, is still endemic in tropical countries; Mycobacterium tuberculosis is the second leading infectious killer worldwide after COVID-19; and Mycobacteroides abscessus, a group of non-tuberculous mycobacteria, causes lung infections and other healthcare-associated infections in humans. Due to the rise in resistance to common antibacterial drugs, it is critical that we develop alternatives to traditional treatment procedures. Furthermore, an understanding of the biochemical mechanisms underlying pathogenic evolution is important for the treatment and management of these diseases. In this study, metabolic models have been developed for two bacterial pathogens, M. leprae and My. abscessus, and a new computational tool has been used to identify potential drug targets, which are referred to as bottleneck reactions. The genes, reactions, and pathways in each of these organisms have been highlighted; the potential drug targets can be further explored as broad-spectrum antibacterials and the unique drug targets for each pathogen are significant for precision medicine initiatives. The models and associated datasets described in this paper are available in GigaDB, Biomodels, and PatMeDB repositories.

2.
Bioinformatics ; 39(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36692133

RESUMEN

MOTIVATION: Despite the fact that antimicrobial resistance is an increasing health concern, the pace of production of new drugs is slow due to the high cost and uncertain success of the process. The development of high-throughput technologies has allowed the integration of biological data into detailed genome-scale models of multiple organisms. Such models can be exploited by means of computational methods to identify system vulnerabilities such as chokepoint reactions and essential reactions. These vulnerabilities are appealing drug targets that can lead to novel drug developments. However, the current approach to compute these vulnerabilities is only based on topological data and ignores the dynamic information of the model. This can lead to misidentified drug targets. RESULTS: This work computes flux constraints that are consistent with a certain growth rate of the modelled organism, and integrates the computed flux constraints into the model to improve the detection of vulnerabilities. By exploiting these flux constraints, we are able to obtain a directionality of the reactions of metabolism consistent with a given growth rate of the model, and consequently, a more realistic detection of vulnerabilities can be performed. Several sets of reactions that are system vulnerabilities are defined and the relationships among them are studied. The approach for the detection of these vulnerabilities has been implemented in the Python tool CONTRABASS. Such tool, for which an online web server has also been implemented, computes flux constraints and generates a report with the detected vulnerabilities. AVAILABILITY AND IMPLEMENTATION: CONTRABASS is available as an open source Python package at https://github.com/openCONTRABASS/CONTRABASS under GPL-3.0 License. An online web server is available at http://contrabass.unizar.es. SUPPLEMENTARY INFORMATION: A glossary of terms are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Desarrollo de Medicamentos
3.
Nat Microbiol ; 7(9): 1431-1441, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36008617

RESUMEN

The medical and scientific response to emerging and established pathogens is often severely hampered by ignorance of the genetic determinants of virulence, drug resistance and clinical outcomes that could be used to identify therapeutic drug targets and forecast patient trajectories. Taking the newly emergent multidrug-resistant bacteria Mycobacterium abscessus as an example, we show that combining high-dimensional phenotyping with whole-genome sequencing in a phenogenomic analysis can rapidly reveal actionable systems-level insights into bacterial pathobiology. Through phenotyping of 331 clinical isolates, we discovered three distinct clusters of isolates, each with different virulence traits and associated with a different clinical outcome. We combined genome-wide association studies with proteome-wide computational structural modelling to define likely causal variants, and employed direct coupling analysis to identify co-evolving, and therefore potentially epistatic, gene networks. We then used in vivo CRISPR-based silencing to validate our findings and discover clinically relevant M. abscessus virulence factors including a secretion system, thus illustrating how phenogenomics can reveal critical pathways within emerging pathogenic bacteria.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Humanos , Factores de Virulencia
4.
Life Sci Alliance ; 4(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353886

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by the new coronavirus (SARS-CoV-2) is currently responsible for more than 3 million deaths in 219 countries across the world and with more than 140 million cases. The absence of FDA-approved drugs against SARS-CoV-2 has highlighted an urgent need to design new drugs. We developed an integrated model of the human cell and SARS-CoV-2 to provide insight into the virus' pathogenic mechanism and support current therapeutic strategies. We show the biochemical reactions required for the growth and general maintenance of the human cell, first, in its healthy state. We then demonstrate how the entry of SARS-CoV-2 into the human cell causes biochemical and structural changes, leading to a change of cell functions or cell death. A new computational method that predicts 20 unique reactions as drug targets from our models and provides a platform for future studies on viral entry inhibition, immune regulation, and drug optimisation strategies. The model is available in BioModels (https://www.ebi.ac.uk/biomodels/MODEL2007210001) and the software tool, findCPcli, that implements the computational method is available at https://github.com/findCP/findCPcli.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/metabolismo , Desarrollo de Medicamentos/métodos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , COVID-19/epidemiología , Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Pandemias
5.
Comput Struct Biotechnol J ; 19: 3938-3953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234921

RESUMEN

Viruses often encode proteins that mimic host proteins in order to facilitate infection. Little work has been done to understand the potential mimicry of the SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins, particularly the receptor-binding motifs, which could be important in determining tropism and druggability of the virus. Peptide and epitope motifs have been detected on coronavirus spike proteins using sequence homology approaches; however, comparing the three-dimensional shape of the protein has been shown as more informative in predicting mimicry than sequence-based comparisons. Here, we use structural bioinformatics software to characterize potential mimicry of the three coronavirus spike protein receptor-binding motifs. We utilize sequence-independent alignment tools to compare structurally known protein models with the receptor-binding motifs and verify potential mimicked interactions with protein docking simulations. Both human and non-human proteins were returned for all three receptor-binding motifs. For example, all three were similar to several proteins containing EGF-like domains: some of which are endogenous to humans, such as thrombomodulin, and others exogenous, such as Plasmodium falciparum MSP-1. Similarity to human proteins may reveal which pathways the spike protein is co-opting, while analogous non-human proteins may indicate shared host interaction partners and overlapping antibody cross-reactivity. These findings can help guide experimental efforts to further understand potential interactions between human and coronavirus proteins.

6.
Science ; 372(6541)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926925

RESUMEN

Although almost all mycobacterial species are saprophytic environmental organisms, a few, such as Mycobacterium tuberculosis, have evolved to cause transmissible human infection. By analyzing the recent emergence and spread of the environmental organism M. abscessus through the global cystic fibrosis population, we have defined key, generalizable steps involved in the pathogenic evolution of mycobacteria. We show that epigenetic modifiers, acquired through horizontal gene transfer, cause saltational increases in the pathogenic potential of specific environmental clones. Allopatric parallel evolution during chronic lung infection then promotes rapid increases in virulence through mutations in a discrete gene network; these mutations enhance growth within macrophages but impair fomite survival. As a consequence, we observe constrained pathogenic evolution while person-to-person transmission remains indirect, but postulate accelerated pathogenic adaptation once direct transmission is possible, as observed for M. tuberculosis Our findings indicate how key interventions, such as early treatment and cross-infection control, might restrict the spread of existing mycobacterial pathogens and prevent new, emergent ones.


Asunto(s)
Enfermedades Transmisibles Emergentes/microbiología , Evolución Molecular , Aptitud Genética , Pulmón/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/genética , Mycobacterium abscessus/patogenicidad , Neumonía Bacteriana/microbiología , Enfermedades Transmisibles Emergentes/transmisión , Conjuntos de Datos como Asunto , Epigénesis Genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Humanos , Mutación , Infecciones por Mycobacterium no Tuberculosas/transmisión , Neumonía Bacteriana/transmisión , Virulencia/genética
7.
Brief Bioinform ; 22(2): 769-780, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33416848

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly growing infectious disease, widely spread with high mortality rates. Since the release of the SARS-CoV-2 genome sequence in March 2020, there has been an international focus on developing target-based drug discovery, which also requires knowledge of the 3D structure of the proteome. Where there are no experimentally solved structures, our group has created 3D models with coverage of 97.5% and characterized them using state-of-the-art computational approaches. Models of protomers and oligomers, together with predictions of substrate and allosteric binding sites, protein-ligand docking, SARS-CoV-2 protein interactions with human proteins, impacts of mutations, and mapped solved experimental structures are freely available for download. These are implemented in SARS CoV-2 3D, a comprehensive and user-friendly database, available at https://sars3d.com/. This provides essential information for drug discovery, both to evaluate targets and design new potential therapeutics.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Bases de Datos de Proteínas , Sistemas de Liberación de Medicamentos , Proteoma , SARS-CoV-2/efectos de los fármacos , Humanos , SARS-CoV-2/aislamiento & purificación
8.
Database (Oxford) ; 2019(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31681953

RESUMEN

Mycobacterium abscessus, a rapid growing, multidrug resistant, nontuberculous mycobacteria, can cause a wide range of opportunistic infections, particularly in immunocompromised individuals. M. abscessus has emerged as a growing threat to patients with cystic fibrosis, where it causes accelerated inflammatory lung damage, is difficult and sometimes impossible to treat and can prevent safe transplantation. There is therefore an urgent unmet need to develop new therapeutic strategies. The elucidation of the M. abscessus genome in 2009 opened a wide range of research possibilities in the field of drug discovery that can be more effectively exploited upon the characterization of the structural proteome. Where there are no experimental structures, we have used the available amino acid sequences to create 3D models of the majority of the remaining proteins that constitute the M. abscessus proteome (3394 proteins and over 13 000 models) using a range of up-to-date computational tools, many developed by our own group. The models are freely available for download in an on-line database, together with quality data and functional annotation. Furthermore, we have developed an intuitive and user-friendly web interface (http://www.mabellinidb.science) that enables easy browsing, querying and retrieval of the proteins of interest. We believe that this resource will be of use in evaluating the prospective targets for design of antimicrobial agents and will serve as a cornerstone to support the development of new molecules to treat M. abscessus infections.


Asunto(s)
Proteínas Bacterianas , Bases de Datos Genéticas , Genoma Bacteriano , Modelos Moleculares , Mycobacterium abscessus , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estudio de Asociación del Genoma Completo , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Mycobacterium abscessus/química , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo
9.
Emerg Microbes Infect ; 8(1): 109-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30866765

RESUMEN

Of the more than 190 distinct species of Mycobacterium genus, many are economically and clinically important pathogens of humans or animals. Among those mycobacteria that infect humans, three species namely Mycobacterium tuberculosis (causative agent of tuberculosis), Mycobacterium leprae (causative agent of leprosy) and Mycobacterium abscessus (causative agent of chronic pulmonary infections) pose concern to global public health. Although antibiotics have been successfully developed to combat each of these, the emergence of drug-resistant strains is an increasing challenge for treatment and drug discovery. Here we describe the impact of the rapid expansion of genome sequencing and genome/pathway annotations that have greatly improved the progress of structure-guided drug discovery. We focus on the applications of comparative genomics, metabolomics, evolutionary bioinformatics and structural proteomics to identify potential drug targets. The opportunities and challenges for the design of drugs for M. tuberculosis, M. leprae and M. abscessus to combat resistance are discussed.


Asunto(s)
Proteínas Bacterianas/química , Biología Computacional/métodos , Mycobacterium/genética , Análisis de Secuencia de ADN/métodos , Animales , Proteínas Bacterianas/metabolismo , Descubrimiento de Drogas , Farmacorresistencia Bacteriana , Genoma Bacteriano , Humanos , Anotación de Secuencia Molecular , Mycobacterium/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformación Proteica , Proteómica
10.
PLoS One ; 13(3): e0192633, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29561870

RESUMEN

The degree of conservation and evolution of cytoplasmic mRNA metabolism pathways across the eukaryotes remains incompletely resolved. In this study, we describe a comprehensive genome and transcriptome-wide analysis of proteins involved in mRNA maturation, translation, and mRNA decay across representative organisms from the six eukaryotic super-groups. We demonstrate that eukaryotes share common pathways for mRNA metabolism that were almost certainly present in the last eukaryotic common ancestor, and show for the first time a correlation between intron density and a selective absence of some Exon Junction Complex (EJC) components in eukaryotes. In addition, we identify pathways that have diversified in individual lineages, with a specific focus on the unique gene gains and losses in members of the Excavata and SAR groups that contribute to their unique gene expression pathways compared to other organisms.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Genes Fúngicos/fisiología , ARN de Hongos , ARN Mensajero , Saccharomyces cerevisiae , Schizosaccharomyces , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...