Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2799: 107-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727905

RESUMEN

NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.


Asunto(s)
Aprendizaje por Laberinto , Memoria a Largo Plazo , Receptores de N-Metil-D-Aspartato , Memoria Espacial , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones , Memoria a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Memoria Espacial/fisiología , Hipocampo/fisiología , Hipocampo/metabolismo , Conducta Animal/fisiología , Plasticidad Neuronal/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38609530

RESUMEN

Cessation of therapy with a selective serotonin (5-HT) reuptake inhibitor (SSRI) is often associated with an early onset and disabling discontinuation syndrome, the mechanism of which is surprisingly little investigated. Here we determined the effect on 5-HT neurochemistry of discontinuation from the SSRI paroxetine. Paroxetine was administered repeatedly to mice (once daily, 12 days versus saline controls) and then either continued or discontinued for up to 5 days. Whereas brain tissue levels of 5-HT and/or its metabolite 5-HIAA tended to decrease during continuous paroxetine, levels increased above controls after discontinuation, notably in hippocampus. In microdialysis experiments continuous paroxetine elevated hippocampal extracellular 5-HT and this effect fell to saline control levels on discontinuation. However, depolarisation (high potassium)-evoked 5-HT release was reduced by continuous paroxetine but increased above controls post-discontinuation. Extracellular hippocampal 5-HIAA also decreased during continuous paroxetine and increased above controls post-discontinuation. Next, immunohistochemistry experiments found that paroxetine discontinuation increased c-Fos expression in midbrain 5-HT (TPH2 positive) neurons, adding further evidence for a hyperexcitable 5-HT system. The latter effect was recapitulated by 5-HT1A receptor antagonist administration although gene expression analysis could not confirm altered expression of 5-HT1A autoreceptors following paroxetine discontinuation. Finally, in behavioural experiments paroxetine discontinuation increased anxiety-like behaviour, which partially correlated in time with the measures of increased 5-HT function. In summary, this study reports evidence that, across a range of experiments, SSRI discontinuation triggers a rebound activation of 5-HT neurons. This effect is reminiscent of neural changes associated with various psychotropic drug withdrawal states, suggesting a common unifying mechanism.

3.
Mol Psychiatry ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321122

RESUMEN

Psychedelic drugs can aid fast and lasting remission from various neuropsychiatric disorders, though the underlying mechanisms remain unclear. Preclinical studies suggest serotonergic psychedelics enhance neuronal plasticity, but whether neuroplastic changes can also be seen at cognitive and behavioural levels is unexplored. Here we show that a single dose of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) affects structural brain plasticity and cognitive flexibility in young adult mice beyond the acute drug experience. Using ex vivo magnetic resonance imaging, we show increased volumes of several sensory and association areas one day after systemic administration of 2 mgkg-1 (±)-DOI. We then demonstrate lasting effects of (±)-DOI on cognitive flexibility in a two-step probabilistic reversal learning task where 2 mgkg-1 (±)-DOI improved the rate of adaptation to a novel reversal in task structure occurring one-week post-treatment. Strikingly, (±)-DOI-treated mice started learning from reward omissions, a unique strategy not typically seen in mice in this task, suggesting heightened sensitivity to previously overlooked cues. Crucially, further experiments revealed that (±)-DOI's effects on cognitive flexibility were contingent on the timing between drug treatment and the novel reversal, as well as on the nature of the intervening experience. (±)-DOI's facilitation of both cognitive adaptation and novel thinking strategies may contribute to the clinical benefits of psychedelic-assisted therapy, particularly in cases of perseverative behaviours and a resistance to change seen in depression, anxiety, or addiction. Furthermore, our findings highlight the crucial role of time-dependent neuroplasticity and the influence of experiential factors in shaping the therapeutic potential of psychedelic interventions for impaired cognitive flexibility.

4.
iScience ; 26(11): 108116, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876813

RESUMEN

Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.

5.
Nat Commun ; 14(1): 6499, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838794

RESUMEN

Previous work has shown that motor skill learning stimulates and requires generation of myelinating oligodendrocytes (OLs) from their precursor cells (OLPs) in the brains of adult mice. In the present study we ask whether OL production is also required for non-motor learning and cognition, using T-maze and radial-arm-maze tasks that tax spatial working memory. We find that maze training stimulates OLP proliferation and OL production in the medial prefrontal cortex (mPFC), anterior corpus callosum (genu), dorsal thalamus and hippocampal formation of adult male mice; myelin sheath formation is also stimulated in the genu. Genetic blockade of OL differentiation and neo-myelination in Myrf conditional-knockout mice strongly impairs training-induced improvements in maze performance. We find a strong positive correlation between the performance of individual wild type mice and the scale of OLP proliferation and OL generation during training, but not with the number or intensity of c-Fos+ neurons in their mPFC, underscoring the important role played by OL lineage cells in cognitive processing.


Asunto(s)
Entrenamiento Cognitivo , Memoria a Corto Plazo , Humanos , Ratones , Animales , Masculino , Oligodendroglía , Ratones Noqueados , Cognición , Vaina de Mielina/fisiología
6.
Mol Psychiatry ; 28(9): 3568-3572, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37736757

RESUMEN

Involvement of the glutamate system, particularly N-methyl-D-aspartate (NMDA) receptor hypofunction, has long been postulated to be part of the pathophysiology of schizophrenia. An important development is provided by recent data that strongly implicate GRIN2A, the gene encoding the NR2A (GluN2A) NMDA receptor subunit, in the aetiology of the disorder. Rare variants and common variants are both robustly associated with genetic risk for schizophrenia. Some of the rare variants are point mutations likely affecting channel function, but most are predicted to cause protein truncation and thence result, like the common variants, in reduced gene expression. We review the genomic evidence, and the findings from Grin2a mutant mice and other models which give clues as to the likely phenotypic impacts of GRIN2A genetic variation. We suggest that one consequence of NR2A dysfunction is impairment in a form of hippocampal synaptic plasticity, producing deficits in short-term habituation and thence elevated and dysregulated levels of attention, a phenotype of relevance to schizophrenia and its cognitive aspects.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animales , Ratones , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Fenotipo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Humanos
7.
Psychopharmacology (Berl) ; 240(11): 2403-2418, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37584734

RESUMEN

RATIONALE: Non-invasive home cage monitoring is emerging as a valuable tool to assess the effects of experimental interventions on mouse behaviour. A field in which these techniques may prove useful is the study of repeated selective serotonin reuptake inhibitor (SSRI) treatment and discontinuation. SSRI discontinuation syndrome is an under-researched condition that includes the emergence of sleep disturbances following treatment cessation. OBJECTIVES: We used passive infrared (PIR) monitoring to investigate changes in activity, sleep, and circadian rhythms during repeated treatment with the SSRI paroxetine and its discontinuation in mice. METHODS: Male mice received paroxetine (10 mg/kg/day, s.c.) for 12 days, then were swapped to saline injections for a 13 day discontinuation period and compared to mice that received saline injections throughout. Mice were continuously tracked using the Continuous Open Mouse Phenotyping of Activity and Sleep Status (COMPASS) system. RESULTS: Repeated paroxetine treatment reduced activity and increased behaviourally-defined sleep in the dark phase. These effects recovered to saline-control levels within 24 h of paroxetine cessation, yet there was also evidence of a lengthening of sleep bouts in the dark phase for up to a week following discontinuation. CONCLUSIONS: This study provides the first example of how continuous non-invasive home cage monitoring can be used to detect objective behavioural changes in activity and sleep during and after drug treatment in mice. These data suggest that effects of paroxetine administration reversed soon after its discontinuation but identified an emergent change in sleep bout duration, which could be used as a biomarker in future preclinical studies to prevent or minimise SSRI discontinuation symptoms.


Asunto(s)
Paroxetina , Inhibidores Selectivos de la Recaptación de Serotonina , Masculino , Animales , Ratones , Paroxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sueño , Ritmo Circadiano
8.
Nat Neurosci ; 26(1): 64-78, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36510112

RESUMEN

Extended wakefulness is associated with reduced performance and the build-up of sleep pressure. In the cortex, this manifests as changes in network activity. These changes show local variation depending on the waking experience, and their underlying mechanisms represent targets for overcoming the effects of tiredness. Here, we reveal a central role for intracellular chloride regulation, which sets the strength of postsynaptic inhibition via GABAA receptors in cortical pyramidal neurons. Wakefulness results in depolarizing shifts in the equilibrium potential for GABAA receptors, reflecting local activity-dependent processes during waking and involving changes in chloride cotransporter activity. These changes underlie electrophysiological and behavioral markers of local sleep pressure within the cortex, including the levels of slow-wave activity during non-rapid eye movement sleep and low-frequency oscillatory activity and reduced performance levels in the sleep-deprived awake state. These findings identify chloride regulation as a crucial link between sleep-wake history, cortical activity and behavior.


Asunto(s)
Cloruros , Sueño , Cloruros/farmacología , Sueño/fisiología , Vigilia/fisiología , Fenómenos Electrofisiológicos , Ácido gamma-Aminobutírico/farmacología , Electroencefalografía
9.
Mol Psychiatry ; 28(2): 579-587, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460723

RESUMEN

Psychosis in disorders like schizophrenia is commonly associated with aberrant salience and elevated striatal dopamine. However, the underlying cause(s) of this hyper-dopaminergic state remain elusive. Various lines of evidence point to glutamatergic dysfunction and impairments in synaptic plasticity in the etiology of schizophrenia, including deficits associated with the GluA1 AMPAR subunit. GluA1 knockout (Gria1-/-) mice provide a model of impaired synaptic plasticity in schizophrenia and exhibit a selective deficit in a form of short-term memory which underlies short-term habituation. As such, these mice are unable to reduce attention to recently presented stimuli. In this study we used fast-scan cyclic voltammetry to measure phasic dopamine responses in the nucleus accumbens of Gria1-/- mice to determine whether this behavioral phenotype might be a key driver of a hyper-dopaminergic state. There was no effect of GluA1 deletion on electrically-evoked dopamine responses in anaesthetized mice, demonstrating normal endogenous release properties of dopamine neurons in Gria1-/- mice. Furthermore, dopamine signals were initially similar in Gria1-/- mice compared to controls in response to both sucrose rewards and neutral light stimuli. They were also equally sensitive to changes in the magnitude of delivered rewards. In contrast, however, these stimulus-evoked dopamine signals failed to habituate with repeated presentations in Gria1-/- mice, resulting in a task-relevant, hyper-dopaminergic phenotype. Thus, here we show that GluA1 dysfunction, resulting in impaired short-term habituation, is a key driver of enhanced striatal dopamine responses, which may be an important contributor to aberrant salience and psychosis in psychiatric disorders like schizophrenia.


Asunto(s)
Dopamina , Habituación Psicofisiológica , Ratones , Animales , Ratones Noqueados , Memoria a Corto Plazo , Fenotipo
10.
Nat Neurosci ; 25(11): 1481-1491, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36216999

RESUMEN

The dentate gyrus (DG) gates neocortical information flow to the hippocampus. Intriguingly, the DG also produces adult-born dentate granule cells (abDGCs) throughout the lifespan, but their contribution to downstream firing dynamics remains unclear. Here, we show that abDGCs promote sparser hippocampal population spiking during mnemonic processing of novel stimuli. By combining triple-(DG-CA3-CA1) ensemble recordings and optogenetic interventions in behaving mice, we show that abDGCs constitute a subset of high-firing-rate neurons with enhanced activity responses to novelty and strong modulation by theta oscillations. Selectively activating abDGCs in their 4-7-week post-birth period increases sparsity of hippocampal population patterns, whereas suppressing abDGCs reduces this sparsity, increases principal cell firing rates and impairs novel object recognition with reduced dimensionality of the network firing structure, without affecting single-neuron spatial representations. We propose that adult-born granule cells transiently support sparser hippocampal population activity structure for higher-dimensional responses relevant to effective mnemonic information processing.


Asunto(s)
Giro Dentado , Hipocampo , Animales , Ratones , Giro Dentado/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Memoria/fisiología
11.
J Psychopharmacol ; 36(7): 794-805, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35607713

RESUMEN

BACKGROUND: Abrupt cessation of therapy with a selective serotonin reuptake inhibitor (SSRI) is associated with a discontinuation syndrome, typified by numerous disabling symptoms, including anxiety. Surprisingly, little is known of the behavioural effect of SSRI discontinuation in animals. AIM: Here, the effect of SSRI discontinuation on anxiety-like behaviour was systematically investigated in mice. METHODS: Experiments were based on a three-arm experimental design comprising saline, continued SSRI and discontinued SSRI. Mice were assessed 2 days after SSRI discontinuation over a 5-day period using the elevated plus maze (EPM) and other anxiety tests. RESULTS: An exploratory experiment found cessation of paroxetine (12 days) was associated with decreased open-arm exploration and reduced total distance travelled, in male but not female mice. Follow-up studies confirmed a discontinuation effect on the EPM in male mice after paroxetine (12 days) and also citalopram (12 days). Mice receiving continued paroxetine (but not citalopram) also showed decreased open-arm exploration but this was dissociable from the effects of discontinuation. The discontinuation response to paroxetine did not strengthen after 28 days of treatment but was absent after 7 days of treatment. A discontinuation response was not discernible in other anxiety and fear-learning tests applied 3-5 days after treatment cessation. Finally, discontinuation effects on the EPM were typically associated with decreased locomotion on the test. However, separate locomotor testing implicated anxiety-provoked behavioural inhibition rather than a general reduction in motor activity. CONCLUSION: Overall, this study provides evidence for a short-lasting behavioural discontinuation response to cessation of SSRI treatment in mice.


Asunto(s)
Ansiedad , Citalopram , Paroxetina , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Ansiedad/tratamiento farmacológico , Citalopram/farmacología , Masculino , Ratones , Paroxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
12.
Transl Psychiatry ; 12(1): 77, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197453

RESUMEN

Serotonergic psychedelic drugs, such as psilocin (4-hydroxy-N,N-dimethyltryptamine), profoundly alter the quality of consciousness through mechanisms which are incompletely understood. Growing evidence suggests that a single psychedelic experience can positively impact long-term psychological well-being, with relevance for the treatment of psychiatric disorders, including depression. A prominent factor associated with psychiatric disorders is disturbed sleep, and the sleep-wake cycle is implicated in the homeostatic regulation of neuronal activity and synaptic plasticity. However, it remains largely unknown to what extent psychedelic agents directly affect sleep, in terms of both acute arousal and homeostatic sleep regulation. Here, chronic electrophysiological recordings were obtained in mice to track sleep-wake architecture and cortical activity after psilocin injection. Administration of psilocin led to delayed REM sleep onset and reduced NREM sleep maintenance for up to approximately 3 h after dosing, and the acute EEG response was associated primarily with an enhanced oscillation around 4 Hz. No long-term changes in sleep-wake quantity were found. When combined with sleep deprivation, psilocin did not alter the dynamics of homeostatic sleep rebound during the subsequent recovery period, as reflected in both sleep amount and EEG slow-wave activity. However, psilocin decreased the recovery rate of sleep slow-wave activity following sleep deprivation in the local field potentials of electrodes targeting the medial prefrontal and surrounding cortex. It is concluded that psilocin affects both global vigilance state control and local sleep homeostasis, an effect which may be relevant for its antidepressant efficacy.


Asunto(s)
Electroencefalografía , Sueño , Animales , Encéfalo/fisiología , Humanos , Ratones , Psilocibina/análogos & derivados , Sueño/fisiología , Privación de Sueño , Vigilia
13.
Transl Psychiatry ; 11(1): 588, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782594

RESUMEN

Dysfunction of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 subunit and deficits in synaptic plasticity are implicated in schizophrenia and sleep and circadian rhythm disruption. To investigate the role of GluA1 in circadian and sleep behaviour, we used wheel-running, passive-infrared, and video-based home-cage activity monitoring to assess daily rest-activity profiles of GluA1-knockout mice (Gria1-/-). We showed that these mice displayed various circadian abnormalities, including misaligned, fragmented, and more variable rest-activity patterns. In addition, they showed heightened, but transient, behavioural arousal to light→dark and dark→light transitions, as well as attenuated nocturnal-light-induced activity suppression (negative masking). In the hypothalamic suprachiasmatic nuclei (SCN), nocturnal-light-induced cFos signals (a molecular marker of neuronal activity in the preceding ~1-2 h) were attenuated, indicating reduced light sensitivity in the SCN. However, there was no change in the neuroanatomical distribution of expression levels of two neuropeptides-vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP)-differentially expressed in the core (ventromedial) vs. shell (dorsolateral) SCN subregions and both are known to be important for neuronal synchronisation within the SCN and circadian rhythmicity. In the motor cortex (area M1/M2), there was increased inter-individual variability in cFos levels during the evening period, mirroring the increased inter-individual variability in locomotor activity under nocturnal light. Finally, in the spontaneous odour recognition task GluA1 knockouts' short-term memory was impaired due to enhanced attention to the recently encountered familiar odour. These abnormalities due to altered AMPA-receptor-mediated signalling resemble and may contribute to sleep and circadian rhythm disruption and attentional deficits in different modalities in schizophrenia.


Asunto(s)
Ritmo Circadiano , Receptores AMPA , Animales , Señales (Psicología) , Ratones , Núcleo Supraquiasmático , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
14.
iScience ; 24(10): 103113, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34611610

RESUMEN

We have shown previously that prebiotic (Bimuno galacto-oligosacharides, B-GOS®) administration to neonatal rats increased hippocampal NMDAR proteins. The present study has investigated the effects of postnatal B-GOS® supplementation on hippocampus-dependent behavior in young, adolescent, and adult rats and applied electrophysiological, metabolomic and metagenomic analyses to explore potential underlying mechanisms. The administration of B-GOS® to suckling, but not post-weaned, rats reduced anxious behavior until adulthood. Neonatal prebiotic intake also reduced the fast decay component of hippocampal NMDAR currents, altered age-specific trajectories of the brain, intestinal, and liver metabolomes, and reduced abundance of fecal Enterococcus and Dorea bacteria. Our data are the first to show that prebiotic administration to rats during a specific postnatal period has long-term effects on behavior and hippocampal physiology. The study also suggests that early-life prebiotic intake may affect host brain function through the reduction of stress-related gut bacteria rather than increasing the proliferation of beneficial microbes.

15.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34556572

RESUMEN

Light provides the primary signal for entraining circadian rhythms to the day/night cycle. In addition to rods and cones, the retina contains a small population of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). Concerns have been raised that exposure to dim artificial lighting in the evening (DLE) may perturb circadian rhythms and sleep patterns, and OPN4 is presumed to mediate these effects. Here, we examine the effects of 4-h, 20-lux DLE on circadian physiology and behavior in mice and the role of OPN4 in these responses. We show that 2 wk of DLE induces a phase delay of ∼2 to 3 h in mice, comparable to that reported in humans. DLE-induced phase shifts are unaffected in Opn4-/- mice, indicating that rods and cones are capable of driving these responses in the absence of melanopsin. DLE delays molecular clock rhythms in the heart, liver, adrenal gland, and dorsal hippocampus. It also reverses short-term recognition memory performance, which is associated with changes in preceding sleep history. In addition, DLE modifies patterns of hypothalamic and cortical cFos signals, a molecular correlate of recent neuronal activity. Together, our data show that DLE causes coordinated realignment of circadian rhythms, sleep patterns, and short-term memory process in mice. These effects are particularly relevant as DLE conditions-due to artificial light exposure-are experienced by the majority of the populace on a daily basis.


Asunto(s)
Ritmo Circadiano , Luz , Memoria a Corto Plazo/fisiología , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/fisiología , Sueño/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Ganglionares de la Retina/citología
16.
BMC Biol ; 19(1): 65, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823872

RESUMEN

BACKGROUND: Homeostatic regulation of sleep is reflected in the maintenance of a daily balance between sleep and wakefulness. Although numerous internal and external factors can influence sleep, it is unclear whether and to what extent the process that keeps track of time spent awake is determined by the content of the waking experience. We hypothesised that alterations in environmental conditions may elicit different types of wakefulness, which will in turn influence both the capacity to sustain continuous wakefulness as well as the rates of accumulating sleep pressure. To address this, we compared the effects of repetitive behaviours such as voluntary wheel running or performing a simple touchscreen task, with wakefulness dominated by novel object exploration, on sleep timing and EEG slow-wave activity (SWA) during subsequent NREM sleep. RESULTS: We find that voluntary wheel running is associated with higher wake EEG theta-frequency activity and results in longer wake episodes, as compared with exploratory behaviour; yet, it does not lead to higher levels of EEG SWA during subsequent NREM sleep in either the frontal or occipital derivation. Furthermore, engagement in a touchscreen task, motivated by food reward, results in lower SWA during subsequent NREM sleep in both derivations, as compared to exploratory wakefulness, even though the total duration of wakefulness is similar. CONCLUSION: Overall, our study suggests that sleep-wake behaviour is highly flexible within an individual and that the homeostatic processes that keep track of time spent awake are sensitive to the nature of the waking experience. We therefore conclude that sleep dynamics are determined, to a large degree, by the interaction between the organism and the environment.


Asunto(s)
Conducta Exploratoria , Ratones/fisiología , Actividad Motora , Carrera , Sueño/fisiología , Vigilia , Animales , Masculino , Ratones Endogámicos C57BL , Sueño de Onda Lenta/fisiología
18.
Biochem Pharmacol ; 191: 114404, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33412102

RESUMEN

Acute exposure to light exerts widespread effects on physiology, in addition to its key role in photoentrainment. Although the modulatory effect of light on physiological arousal is well demonstrated in mice, its effect on memory performance is inconclusive, as the direction of the effect depends on the nature of the behavioural task employed and/or the type of stimulus utilised. Moreover, in all rodent studies that reported significant effects of light on performance, brain activity was not assessed during the task and thus it is unclear how brain activity was modulated by light or the exact relationship between light-modulated brain activity and performance. Here we examine the modulatory effects of light of varying intensities on recognition memory performance and frontoparietal waking electroencephalography (EEG) in mice using the spontaneous recognition memory task. We report a light-intensity-dependent disruptive effect on recognition memory performance at the group level, but inspection of individual-level data indicates that light-intensity-dependent facilitation is observed in some cases. Using linear mixed-effects models, we then demonstrate that EEG fast theta (θ) activity at the time of encoding negatively predicts recognition memory performance, whereas slow gamma (γ) activity at the time of retrieval positively predicts performance. These relationships between θ/γ activity and performance are strengthened by increasing light intensity. Thus, light modulates θ and γ band activities involved in attentional and mnemonic processes, thereby affecting recognition memory performance. However, extraneous factors including the phase of the internal clock at which light is presented and homeostatic sleep pressure may determine how photic input is translated into behavioural performance.


Asunto(s)
Encéfalo/fisiología , Ritmo Gamma/fisiología , Memoria/fisiología , Estimulación Luminosa/métodos , Reconocimiento en Psicología/fisiología , Ritmo Teta/fisiología , Animales , Electroencefalografía/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Odorantes , Olfato/fisiología
19.
Commun Biol ; 4(1): 59, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420383

RESUMEN

The NMDA receptor-mediated Ca2+ signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2aN615S), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits. In contrast, the NMDAR antagonist MK-801-induced c-Fos expression is reduced in the hippocampus. Likewise, the synchronization of theta- and gamma oscillatory activity is lowered during exploration, demonstrating reduced hippocampal activity. This is associated with exploratory hyperactivity and aberrantly increased and dysregulated levels of attention that can interfere with associative learning, in particular when relevant cues and reward outcomes are disconnected in space and time. Together, our findings provide (i) experimental evidence that the inherent voltage-dependent Ca2+ signaling of NMDA receptors is essential for maintaining appropriate responses to sensory stimuli and (ii) a mechanistic explanation for the neurological manifestations seen in the NMDAR-related human disorders with GRIN2 variant-meidiated intellectual disability and focal epilepsy.


Asunto(s)
Señalización del Calcio , Disfunción Cognitiva/genética , Epilepsia Refleja/genética , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Aprendizaje por Asociación , Trastorno por Déficit de Atención con Hiperactividad/genética , Hipocampo/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Memoria Espacial
20.
Front Pharmacol ; 11: 486811, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178010

RESUMEN

The development of current neuroleptics was largely aiming to decrease excessive dopaminergic signaling in the striatum. However, the notion that abnormal dopamine creates psychotic symptoms by causing an aberrant assignment of salience that drives maladaptive learning chronically during disease development suggests a therapeutic value of early interventions that correct salience-related neural processing. The mesolimbic dopaminergic output is modulated by several interconnected brain-wide circuits centrally involving the hippocampus and key relays like the ventral and associative striatum, ventral pallidum, amygdala, bed nucleus of the stria terminalis, nucleus reuniens, lateral and medial septum, prefrontal and cingulate cortex, among others. Unraveling the causal relationships between these circuits using modern neuroscience techniques holds promise for identifying novel cellular-and ultimately molecular-treatment targets for reducing transition to psychosis and symptoms of schizophrenia. Imaging studies in humans have implicated a hyperactivity of the hippocampus as a robust and early endophenotype in schizophrenia. Experiments in rodents, in turn, suggested that the activity of its output region-the ventral subiculum-may modulate dopamine release from ventral tegmental area (VTA) neurons in the ventral striatum. Even though these observations suggested a novel circuit-level target for anti-psychotic action, no therapy has yet been developed along this rationale. Recently evaluated treatment strategies-at least in part-target excess glutamatergic activity, e.g. N-acetyl-cysteine (NAC), levetiracetam, and mGluR2/3 modulators. We here review the evidence for the central implication of the hippocampus-VTA axis in schizophrenia-related pathology, discuss its symptom-related implications with a particular focus on aberrant assignment of salience, and evaluate some of its short-comings and prospects for drug discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...