Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(15): 7709-7713, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37493596
2.
Nat Rev Genet ; 23(9): 563-580, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35338361

RESUMEN

Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.


Asunto(s)
Histonas , Procesamiento Proteico-Postraduccional , ADN/genética , Reparación del ADN , Replicación del ADN , Histonas/genética , Histonas/metabolismo
3.
Nat Microbiol ; 7(1): 154-168, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949827

RESUMEN

Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Imitación Molecular , FN-kappa B/genética , Virus Vaccinia/genética , Proteínas Virales/genética , Proteína de Unión a CREB/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Transcripción Genética , Vaccinia/virología , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
4.
Commun Biol ; 4(1): 1273, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754068

RESUMEN

Bromodomain-containing protein 4 (BRD4) is an epigenetic reader and oncology drug target that regulates gene transcription through binding to acetylated chromatin via bromodomains. Phosphorylation by casein kinase II (CK2) regulates BRD4 function, is necessary for active transcription and is involved in resistance to BRD4 drug inhibition in triple-negative breast cancer. Here, we provide the first biophysical analysis of BRD4 phospho-regulation. Using integrative structural biology, we show that phosphorylation by CK2 modulates the dimerization of human BRD4. We identify two conserved regions, a coiled-coil motif and the Basic-residue enriched Interaction Domain (BID), essential for the BRD4 structural rearrangement, which we term the phosphorylation-dependent dimerization domain (PDD). Finally, we demonstrate that bivalent inhibitors induce a conformational change within BRD4 dimers in vitro and in cancer cells. Our results enable the proposal of a model for BRD4 activation critical for the characterization of its protein-protein interaction network and for the development of more specific therapeutics.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica , Factores de Transcripción/genética , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilación , Factores de Transcripción/metabolismo
5.
Nature ; 593(7860): 597-601, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33902106

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Metiltransferasas/antagonistas & inhibidores , Adenosina/análogos & derivados , Animales , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancers (Basel) ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008316

RESUMEN

Anaplastic large-cell lymphoma (ALCL) is a T-cell malignancy driven in many cases by the product of a chromosomal translocation, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). NPM-ALK activates a plethora of pathways that drive the hallmarks of cancer, largely signalling pathways normally associated with cytokine and/or T-cell receptor-induced signalling. However, NPM-ALK is also located in the nucleus and its functions in this cellular compartment for the most part remain to be determined. We show that ALCL cell lines and primary patient tumours express the transcriptional activator BRG1 in a NPM-ALK-dependent manner. NPM-ALK regulates expression of BRG1 by post-translational mechanisms dependent on its kinase activity, protecting it from proteasomal degradation. Furthermore, we show that BRG1 drives a transcriptional programme associated with cell cycle progression. In turn, inhibition of BRG1 expression with specific shRNA decreases cell viability, suggesting that it may represent a key therapeutic target for the treatment of ALCL.

8.
Mol Metab ; 38: 100942, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32217072

RESUMEN

BACKGROUND: Virtually all eukaryotic cells contain spatially distinct genomes, a single nuclear genome that harbours the vast majority of genes and much smaller genomes found in mitochondria present at thousands of copies per cell. To generate a coordinated gene response to various environmental cues, the genomes must communicate with each another. Much of this bi-directional crosstalk relies on epigenetic processes, including DNA, RNA, and histone modification pathways. Crucially, these pathways, in turn depend on many metabolites generated in specific pools throughout the cell, including the mitochondria. They also involve the transport of metabolites as well as the enzymes that catalyse these modifications between nuclear and mitochondrial genomes. SCOPE OF REVIEW: This study examines some of the molecular mechanisms by which metabolites influence the activity of epigenetic enzymes, ultimately affecting gene regulation in response to metabolic cues. We particularly focus on the subcellular localisation of metabolite pools and the crosstalk between mitochondrial and nuclear proteins and RNAs. We consider aspects of mitochondrial-nuclear communication involving histone proteins, and potentially their epigenetic marks, and discuss how nuclear-encoded enzymes regulate mitochondrial function through epitranscriptomic pathways involving various classes of RNA molecules within mitochondria. MAJOR CONCLUSIONS: Epigenetic communication between nuclear and mitochondrial genomes occurs at multiple levels, ultimately ensuring a coordinated gene expression response between different genetic environments. Metabolic changes stimulated, for example, by environmental factors, such as diet or physical activity, alter the relative abundances of various metabolites, thereby directly affecting the epigenetic machinery. These pathways, coupled to regulated protein and RNA transport mechanisms, underpin the coordinated gene expression response. Their overall importance to the fitness of a cell is highlighted by the identification of many mutations in the pathways we discuss that have been linked to human disease including cancer.


Asunto(s)
Comunicación Celular/genética , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Animales , Comunicación Celular/fisiología , Núcleo Celular/genética , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Genoma Mitocondrial/genética , Genoma Mitocondrial/fisiología , Histona Acetiltransferasas/metabolismo , Histonas/genética , Humanos , Mitocondrias/genética , ARN/metabolismo
9.
Nat Rev Mol Cell Biol ; 20(10): 573-589, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31270442

RESUMEN

Chromatin is a macromolecular complex predominantly comprising DNA, histone proteins and RNA. The methylation of chromatin components is highly conserved as it helps coordinate the regulation of gene expression, DNA repair and DNA replication. Dynamic changes in chromatin methylation are essential for cell-fate determination and development. Consequently, inherited or acquired mutations in the major factors that regulate the methylation of DNA, RNA and/or histones are commonly observed in developmental disorders, ageing and cancer. This has provided the impetus for the clinical development of epigenetic therapies aimed at resetting the methylation imbalance observed in these disorders. In this Review, we discuss the cellular functions of chromatin methylation and focus on how this fundamental biological process is corrupted in cancer. We discuss methylation-based cancer therapies and provide a perspective on the emerging data from early-phase clinical trial therapies that target regulators of DNA and histone methylation. We also highlight promising therapeutic strategies, including monitoring chromatin methylation for diagnostic purposes and combination epigenetic therapy strategies that may improve immune surveillance in cancer and increase the efficacy of conventional and targeted anticancer drugs.


Asunto(s)
Metilación de ADN , ADN de Neoplasias/metabolismo , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Procesamiento Postranscripcional del ARN , ARN Neoplásico/metabolismo , ADN de Neoplasias/genética , Histonas/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , ARN Neoplásico/genética
10.
Epigenetics Chromatin ; 12(1): 21, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940194

RESUMEN

BACKGROUND: Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance. RESULTS: We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs. CONCLUSION: Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Citrulinación , Heterocromatina/metabolismo , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Heterocromatina/química , Heterocromatina/genética , Código de Histonas , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Mutación , Unión Proteica , Desiminasas de la Arginina Proteica/metabolismo
11.
Mol Cell ; 74(6): 1278-1290.e9, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31031083

RESUMEN

7-methylguanosine (m7G) is present at mRNA caps and at defined internal positions within tRNAs and rRNAs. However, its detection within low-abundance mRNAs and microRNAs (miRNAs) has been hampered by a lack of sensitive detection strategies. Here, we adapt a chemical reactivity assay to detect internal m7G in miRNAs. Using this technique (Borohydride Reduction sequencing [BoRed-seq]) alongside RNA immunoprecipitation, we identify m7G within a subset of miRNAs that inhibit cell migration. We show that the METTL1 methyltransferase mediates m7G methylation within miRNAs and that this enzyme regulates cell migration via its catalytic activity. Using refined mass spectrometry methods, we map m7G to a single guanosine within the let-7e-5p miRNA. We show that METTL1-mediated methylation augments let-7 miRNA processing by disrupting an inhibitory secondary structure within the primary miRNA transcript (pri-miRNA). These results identify METTL1-dependent N7-methylation of guanosine as a new RNA modification pathway that regulates miRNA structure, biogenesis, and cell migration.


Asunto(s)
Guanosina/análogos & derivados , Metiltransferasas/genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN , Células A549 , Secuencia de Bases , Bioensayo , Células CACO-2 , Movimiento Celular , Proliferación Celular , Guanosina/metabolismo , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , MicroARNs/metabolismo , Conformación de Ácido Nucleico
12.
Nat Commun ; 9(1): 5378, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568163

RESUMEN

We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular , Diferenciación Celular , Cromatina/metabolismo , Epigénesis Genética , Células HL-60 , Hematopoyesis , Humanos , Células K562 , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN
13.
Nature ; 552(7683): 126-131, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29186125

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification in both coding and non-coding RNAs that is catalysed by the METTL3-METTL14 methyltransferase complex. However, the specific role of these enzymes in cancer is still largely unknown. Here we define a pathway that is specific for METTL3 and is implicated in the maintenance of a leukaemic state. We identify METTL3 as an essential gene for growth of acute myeloid leukaemia cells in two distinct genetic screens. Downregulation of METTL3 results in cell cycle arrest, differentiation of leukaemic cells and failure to establish leukaemia in immunodeficient mice. We show that METTL3, independently of METTL14, associates with chromatin and localizes to the transcriptional start sites of active genes. The vast majority of these genes have the CAATT-box binding protein CEBPZ present at the transcriptional start site, and this is required for recruitment of METTL3 to chromatin. Promoter-bound METTL3 induces m6A modification within the coding region of the associated mRNA transcript, and enhances its translation by relieving ribosome stalling. We show that genes regulated by METTL3 in this way are necessary for acute myeloid leukaemia. Together, these data define METTL3 as a regulator of a chromatin-based pathway that is necessary for maintenance of the leukaemic state and identify this enzyme as a potential therapeutic target for acute myeloid leukaemia.


Asunto(s)
Adenosina/análogos & derivados , Regulación Neoplásica de la Expresión Génica/genética , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Metiltransferasas/metabolismo , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Adenosina/genética , Adenosina/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Femenino , Genes Relacionados con las Neoplasias/genética , Humanos , Leucemia Mieloide Aguda/patología , Metiltransferasas/química , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones , Biosíntesis de Proteínas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Sitio de Iniciación de la Transcripción
14.
Angew Chem Int Ed Engl ; 55(38): 11382-6, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27530368

RESUMEN

ATAD2 is a cancer-associated protein whose bromodomain has been described as among the least druggable of that target class. Starting from a potent lead, permeability and selectivity were improved through a dual approach: 1) using CF2 as a sulfone bio-isostere to exploit the unique properties of fluorine, and 2) using 1,3-interactions to control the conformation of a piperidine ring. This resulted in the first reported low-nanomolar, selective and cell permeable chemical probe for ATAD2.

15.
Artículo en Inglés | MEDLINE | ID: mdl-27446239

RESUMEN

Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.

16.
Nat Struct Mol Biol ; 23(7): 673-81, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27294782

RESUMEN

Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Histonas/genética , Leucemia Bifenotípica Aguda/genética , Metiltransferasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Acetilación , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Proteínas de Ciclo Celular , Proliferación Celular , Cromatina/química , Cromatina/metabolismo , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Femenino , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Leucemia Bifenotípica Aguda/metabolismo , Leucemia Bifenotípica Aguda/patología , Masculino , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Unión Proteica , Proteómica/métodos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Linfocitos T/patología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética
17.
J Med Chem ; 59(4): 1425-39, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25856009

RESUMEN

Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Factores de Transcripción/química
19.
Elife ; 3: e01632, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24668167

RESUMEN

Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética , Activación Transcripcional , Acetilación , Animales , Células Madre Embrionarias/metabolismo , Histonas/química , Humanos , Cinética , Lisina , Masculino , Metilación , Ratones , Células 3T3 NIH , Células-Madre Neurales/metabolismo , Conformación de Ácido Nucleico , Conformación Proteica , Estabilidad Proteica , Transfección , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...