Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 11(29): 6762-6781, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37377089

RESUMEN

Since 1970, many artificial enzymes that imitate the activity and structure of natural enzymes have been discovered. Nanozymes are a group of nanomaterials with enzyme-mimetic properties capable of catalyzing natural enzyme processes. Nanozymes have attracted great interest in biomedicine due to their excellent stability, rapid reactivity, and affordable cost. The enzyme-mimetic activities of nanozymes may be modulated by numerous parameters, including the oxidative state of metal ions, pH, hydrogen peroxide (H2O2) level, and glutathione (GSH) concentration, indicating the tremendous potential for biological applications. This article delivers a comprehensive overview of the advances in the knowledge of nanozymes and the creation of unique and multifunctional nanozymes, and their biological applications. In addition, a future perspective of employing the as-designed nanozymes in biomedical and diagnostic applications is provided, and we also discuss the barriers and constraints for their further therapeutic use.


Asunto(s)
Peróxido de Hidrógeno , Nanoestructuras , Nanoestructuras/química , Biomimética , Oxidación-Reducción
2.
Talanta ; 241: 123257, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114490

RESUMEN

Development of multifunctional ternary nanocomposite based electrocatalysts for detection of toxic elements and generation of renewable energy describes an environmentally sustainable technique to address the dual challenges of pollution and energy. Herein, we adopted microwave-assisted synthesis to design a multifunctional graphitic carbon nitride (g-C3N4) decorated BiVO4/Ag2CO3 (BVG@C) hierarchical ternary nanocomposite for sensing and water splitting applications. The morphological, structural and elemental characterizations demonstrate the successful decoration of carbon nitride on the composite surface. The electrochemical activity of BVG@C modified glassy carbon electrode reveals excellent redox behaviour towards simultaneous detection of 4-Nitrophenol (4-NP) and 4-Nitroaniline (PNA). The modified electrode shows rapid amperometric current response with high sensitivity of 2.368 µA mM cm-2 and 1.534 mA mM cm-2 and low detection limit of 0.012 µmol L-1and 0.028 µmol L-1, respectively for 4-NP and PNA. Moreover, the modified electrode was further investigated for hydrogen evolution and oxygen evolution reactions and the electrocatalytic results show admirable activity and good stability for oxygen evolution with very low overpotential of 136 mV in alkaline medium. It is worthwhile to mention that the excellent activity of electrocatalyst can be ascribed to the decoration and electronic interaction of g-C3N4 with the BiVO4/Ag2CO3 nanocomposite, increasing its surface area, active sites, charge transfer and decreasing resistance.


Asunto(s)
Nanocompuestos , Agua , Carbono , Técnicas Electroquímicas/métodos , Electrodos , Nanocompuestos/química
3.
Chemosphere ; 275: 130065, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33652279

RESUMEN

A major and growing concern within society is the lack of innovative and effective solutions to mitigate the challenge of environmental pollution. Uncontrolled release of pollutants into the environment as a result of urbanisation and industrialisation is a staggering problem of global concern. Although, the eco-toxicity of nanotechnology is still an issue of debate, however, nanoremediation is a promising emerging technology to tackle environmental contamination, especially dealing with recalcitrant contaminants. Nanoremediation represents an innovative approach for safe and sustainable remediation of persistent organic compounds such as pesticides, chlorinated solvents, brominated or halogenated chemicals, perfluoroalkyl and polyfluoroalkyl substances (PFAS), and heavy metals. This comprehensive review article provides a critical outlook on the recent advances and future perspectives of nanoremediation technologies such as photocatalysis, nano-sensing etc., applied for environmental decontamination. Moreover, sustainability assessment of nanoremediation technologies was taken into consideration for tackling legacy contamination with special focus on health and environmental impacts. The review further outlines the ecological implications of nanotechnology and provides consensus recommendations on the use of nanotechnology for a better present and sustainable future.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Metales Pesados , Plaguicidas , Contaminación Ambiental , Nanotecnología , Plaguicidas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...