Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 30(4): 751-758, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38973606

RESUMEN

Tumor histomorphology is crucial for the prognostication of breast cancer outcomes because it contains histological, cellular, and molecular tumor heterogeneity related to metastatic potential. To enhance breast cancer prognosis, we aimed to apply radiomics analysis-traditionally used in 3D scans-to 2D histopathology slides. This study tested radiomics analysis in a cohort of 92 breast tumor specimens for outcome prognosis, addressing -omics dimensionality by comparing models with moderate and high feature counts, using least absolute shrinkage and selection operator for feature selection and machine learning for prognostic modeling. In the test folds, models with radiomics features [area under the curves (AUCs) range 0.799-0.823] significantly outperformed the benchmark model, which only included clinicopathological (CP) parameters (AUC = 0.584). The moderate-dimensionality model with 11 CP + 93 radiomics features matched the performance of the highly dimensional models with 1,208 radiomics or 11 CP + 1,208 radiomics features, showing average AUCs of 0.823, 0.799, and 0.807 and accuracies of 79.8, 79.3, and 76.6%, respectively. In conclusion, our application of deep texture radiomics analysis to 2D histopathology showed strong prognostic performance with a moderate-dimensionality model, surpassing a benchmark based on standard CP parameters, indicating that this deep texture histomics approach could potentially become a valuable prognostic tool.


Asunto(s)
Neoplasias de la Mama , Metástasis de la Neoplasia , Humanos , Neoplasias de la Mama/patología , Femenino , Pronóstico , Persona de Mediana Edad , Aprendizaje Automático , Procesamiento de Imagen Asistido por Computador/métodos , Radiómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...