Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038278

RESUMEN

Ensuring good definition of scaffolds used for 3D cell culture is a prominent challenge that hampers the development of tissue engineering platforms. Since dextran repels cell adhesion, using dextran-based materials biofunctionalized through a bottom-up approach allows for precise control over material definition. Here, we report the design of dextran hydrogels displaying a fully interconnected macropore network for the culture of vascular spheroids in vitro. We biofunctionalized the hydrogels with the RGD peptide sequence to promote cell adhesion. We used an affinity peptide pair, the E/K coiled coil, to load the gels with epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Dual functionalization with adhesive and proliferative cues allows vascular spheroids to colonize naturally cell-repellant dextran. In supplement-depleted medium, we report improved colonization of the macropores compared to that of unmodified dextran. Altogether, we propose a well-defined and highly versatile platform for tissue engineering and tissue vascularization applications.

2.
ACS Appl Mater Interfaces ; 16(29): 38550-38563, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38980156

RESUMEN

The role of carboxylic, aldehyde, or epoxide groups incorporated into bottlebrush macromolecules as anchoring blocks (or cartilage-binding blocks) is investigated by measuring their lubricating properties and cartilage-binding effectiveness. Mica modified with amine groups is used to mimic the cartilage surface, while bottlebrush polymers functionalized with carboxylic, aldehyde, or epoxide groups played the role of the lubricant interacting with the cartilage surface. We demonstrate that bottlebrushes with anchoring blocks effectively reduce the friction coefficient on modified surfaces by 75-95% compared to unmodified mica. The most efficient polymer appears to be the one with epoxide groups, which can react spontaneously with amines at room temperature. In this case, the value of the friction coefficient is the lowest and equals 0.009 ± 0.001, representing a 95% reduction compared to measurements on nonmodified mica. These results show that the presence of the functional groups within the anchoring blocks has a significant influence on interactions between the bottlebrush polymer and cartilage surface. All synthesized bottlebrush polymers are also used in the preliminary lubrication tests carried out on animal cartilage surfaces. The developed materials are very promising for future in vivo studies to be used in osteoarthritis treatment.


Asunto(s)
Cartílago Articular , Lubrificación , Polímeros , Polímeros/química , Animales , Cartílago Articular/química , Cartílago Articular/fisiología , Propiedades de Superficie , Silicatos de Aluminio/química , Fricción , Lubricantes/química
3.
Adv Healthc Mater ; : e2401353, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801163

RESUMEN

Phenylketonuria (PKU) is a genetically inherited disease caused by a mutation of the gene encoding phenylalanine hydroxylase (PAH) and is the most common inborn error of amino acid metabolism. A deficiency of PAH leads to increased blood and brain levels of phenylalanine (Phe), which may cause permanent neurocognitive symptoms and developmental delays if untreated. Current management strategies for PKU consist of early detection through neonatal screening and implementation of a restrictive diet with minimal amounts of natural protein in combination with Phe-free supplements and low-protein foods to meet nutritional requirements. For milder forms of PKU, oral treatment with synthetic sapropterin (BH4), the cofactor of PAH, may improve metabolic control of Phe and allow for more natural protein to be included in the patient's diet. For more severe forms, daily injections of pegvaliase, a PEGylated variant of phenylalanine ammonia-lyase (PAL), may allow for normalization of blood Phe levels. However, the latter treatment has considerable drawbacks, notably a strong immunogenicity of the exogenous enzyme and the attached polymeric chains. Research for novel therapies of PKU makes use of innovative materials for drug delivery and state-of-the-art protein engineering techniques to develop treatments which are safer, more effective, and potentially permanent.

4.
Pharmaceutics ; 16(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675224

RESUMEN

Lipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention in the biomedical field. Illuminated by our previous work, here we investigate if the LbL approach could be used to modify the LNP cores formulated with three different ionizable lipids: DODMA, MC3, and DODAP. Additionally, we wondered if more than three layers could be loaded onto LNPs without disrupting their gene transfection ability. Taking advantage of physicochemical analysis, as well as uptake and gene silencing studies, we demonstrate the feasibility of modifying the surface of LNPs with the LbL assembly. Precisely, we successfully modified three different LNPs using the layer-by-layer strategy which abrogated luciferase activity in vitro. Additionally, we constructed a 5×-layered HA-LNP containing the MC3 ionizable lipid which outperformed the 3×-layered counterpart in transfecting miRNA-181-5p to the pediatric GBM cell line, as a proof-of-concept in vitro experiment. The method used herein has been proven reproducible, of easy modification to adapt to different ionizable lipid-containing LNPs, and holds great potential for the translation of RNA-based therapeutic strategies.

5.
Adv Mater ; 36(25): e2401689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552182

RESUMEN

Bottlebrush polymers (BB) have emerged as compelling candidates for biosystems to face tribological challenges, including friction and wear. This study provides a comprehensive assessment of an engineered triblock BB polymer's affinity, cell toxicity, lubrication, and wear protection in both in vitro and in vivo settings, focusing on applications for conditions like osteoarthritis and dry eye syndrome. Results show that the designed polymer rapidly adheres to various surfaces (e.g., cartilage, eye, and contact lens), forming a robust, biocompatible layer for surface lubrication and protection. The tribological performance and biocompatibility are further enhanced in the presence of hyaluronic acid (HA) both in vitro and in vivo. The exceptional lubrication performance and favorable interaction with HA position the synthesized triblock polymer as a promising candidate for innovative treatments addressing deficiencies in bio-lubricant systems.


Asunto(s)
Fricción , Ácido Hialurónico , Polímeros , Animales , Ácido Hialurónico/química , Polímeros/química , Polímeros/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratones , Humanos , Lubrificación , Propiedades de Superficie , Lubricantes/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología
6.
ACS Macro Lett ; 12(11): 1589-1594, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37942990

RESUMEN

Multicompartment particles have been produced to date by the self-assembly of linear multiblock polymers. Besides the large diversity of structures that can be obtained with this approach, these are highly sensitive to dilution and environmental factors. Here we show that using core-shell bottlebrush polymers with a hydrophobic polyester core as starting materials it is possible to create compartmentalized particles from the micrometer size down to the molecular scale. These polymers can be used as building blocks to create multicompartment particles and networks via a self-assembly process. The polymers can encapsulate active compounds and slowly degrade in water into polymeric micelles, making them promising materials for drug delivery applications.

7.
Biomaterials ; 302: 122341, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778056

RESUMEN

Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer. Current pharmacological interventions marginally increase the 12-month overall survival of patients with GBM. Among the novel therapeutic strategies being pursued, micro-RNAs, a class of non-coding RNAs, are receiving considerable attention for their regulation of several pathways implicated in tumorigenesis and survival. Notably, microRNA-181a-5p (miR-181a) has consistently been reported to be downregulated in GBM clinical samples, and its overexpression negatively affects tumor growth both in vitro and in vivo. To improve the delivery of miR-181a to GBM cells, we sought to develop a modified lipid-based nanocarrier capable of encapsulating and delivering miR-181a to GBM cells in vitro and in vivo. Optimized ionizable-lipid containing lipid nanoparticles (LNP) were constructed by covering the miR-181a-loaded LNP with alternating layers of miR-181a, poly-l-arginine and hyaluronic acid through the layer-by-layer technique. The resulting hyaluronan-decorated lipid nanoparticles (HA-LNP) targeted GBM cells more efficiently than non-modified LNP and mediated siRNA and miRNA transfection in vitro. Finally, delivery of miR-181a by HA-LNP induced significant cellular death of U87 GBM cells in vitro and delayed tumor growth in an in vivo subcutaneous tumor model.


Asunto(s)
Glioblastoma , MicroARNs , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Ácido Hialurónico , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Lípidos , Proliferación Celular
8.
Sci Rep ; 13(1): 16443, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777587

RESUMEN

Neuroblastoma, the most common type of pediatric extracranial solid tumor, causes 10% of childhood cancer deaths. Despite intensive multimodal treatment, the outcomes of high-risk neuroblastoma remain poor. We urgently need to develop new therapies with safe long-term toxicity profiles for rapid testing in clinical trials. Drug repurposing is a promising approach to meet these needs. Here, we investigated disulfiram, a safe and successful chronic alcoholism treatment with known anticancer and epigenetic effects. Disulfiram efficiently induced cell cycle arrest and decreased the viability of six human neuroblastoma cell lines at half-maximal inhibitory concentrations up to 20 times lower than its peak clinical plasma level in patients treated for chronic alcoholism. Disulfiram shifted neuroblastoma transcriptome, decreasing MYCN levels and activating neuronal differentiation. Consistently, disulfiram significantly reduced the protein level of lysine acetyltransferase 2A (KAT2A), drastically reducing acetylation of its target residues on histone H3. To investigate disulfiram's anticancer effects in an in vivo model of high-risk neuroblastoma, we developed a disulfiram-loaded emulsion to deliver the highly liposoluble drug. Treatment with the emulsion significantly delayed neuroblastoma progression in mice. These results identify KAT2A as a novel target of disulfiram, which directly impacts neuroblastoma epigenetics and is a promising candidate for repurposing to treat pediatric neuroblastoma.


Asunto(s)
Disulfiram , Neuroblastoma , Animales , Niño , Humanos , Ratones , Disuasivos de Alcohol/farmacología , Disuasivos de Alcohol/uso terapéutico , Línea Celular Tumoral , Disulfiram/farmacología , Disulfiram/uso terapéutico , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Emulsiones/uso terapéutico , Histona Acetiltransferasas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética
9.
Langmuir ; 39(34): 12235-12247, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37581531

RESUMEN

We compared different biofunctionalization strategies for immobilizing trastuzumab, an IgG targeting the HER2 biomarker, onto 100 nm spherical gold nanoparticles because of the E/K coiled-coil peptide heterodimer. First, Kcoil peptides were grafted onto the gold surface while their Ecoil partners were genetically encoded at the C-terminus of trastuzumab's Fc region, allowing for a strong and specific interaction between the antibodies and the nanoparticles. Gold nanoparticles with no Kcoil peptides on their surface were also produced to immobilize Ecoil-tagged trastuzumab antibodies via the specific adsorption of their negatively charged Ecoil tags on the positively charged gold surface. Finally, the nonspecific adsorption of wild-type trastuzumab on the gold surface was also assessed, with and without Kcoil peptides grafted on it beforehand. We developed a thorough workflow to systematically compare the immobilization strategies regarding the stability of nanoparticles, antibody coverage, and ability to specifically bind to HER2-positive breast cancer cells. All nanoparticles were highly monodisperse and retained their localized surface plasmon resonance properties after biofunctionalization. A significant increase in the amount of immobilized antibodies was observed with the two oriented coil-based strategies compared to nonspecific adsorption. Finally, all biofunctionalization strategies allowed for the detection of HER2-positive breast cancer cells, but among the investigated approaches, we recommend using the E/K coiled-coil-based strategy for gold nanoparticle biofunctionalization because it allows for the qualitative and quantitative detection of HER2-positive cells with a higher contrast compared to HER2-negative cells.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Trastuzumab , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Trastuzumab/química
10.
Sci Adv ; 9(28): eadf3902, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436992

RESUMEN

Water-based lubricants provide lubrication of rubbing surfaces in many technical, biological, and physiological applications. The structure of hydrated ion layers adsorbed on solid surfaces that determine the lubricating properties of aqueous lubricants is thought to be invariable in hydration lubrication. However, we prove that the ion surface coverage dictates the roughness of the hydration layer and its lubricating properties, especially under subnanometer confinement. We characterize different hydration layer structures on surfaces lubricated by aqueous trivalent electrolytes. Two superlubrication regimes are observed with friction coefficients of 10-4 and 10-3, depending on the structure and thickness of the hydration layer. Each regime exhibits a distinct energy dissipation pathway and a different dependence to the hydration layer structure. Our analysis supports the idea of an intimate relationship between the dynamic structure of a boundary lubricant film and its tribological properties and offers a framework to study such relationship at the molecular level.

11.
MAbs ; 15(1): 2218951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37300397

RESUMEN

Long-term delivery is a successful strategy used to reduce the adverse effects of monoclonal antibody (mAb)-based treatments. Macroporous hydrogels and affinity-based strategies have shown promising results in sustained and localized delivery of the mAbs. Among the potential tools for affinity-based delivery systems, the de novo designed Ecoil and Kcoil peptides are engineered to form a high-affinity, heterodimeric coiled-coil complex under physiological conditions. In this study, we created a set of trastuzumab molecules tagged with various Ecoil peptides and evaluated their manufacturability and characteristics. Our data show that addition of an Ecoil tag at the C-termini of the antibody chains (light chains, heavy chains, or both) does not hinder the production of chimeric trastuzumab in CHO cells or affect antibody binding to its antigen. We also evaluated the influence of the number, length, and position of the Ecoil tags on the capture and release of Ecoil-tagged trastuzumab from macroporous dextran hydrogels functionalized with Kcoil peptide (the Ecoil peptide-binding partner). Notably, our data show that antibodies are released from the macroporous hydrogels in a biphasic manner; the first phase corresponding to the rapid release of residual, unbound trastuzumab from the macropores, followed by the affinity-controlled, slow-rate release of antibodies from the Kcoil-functionalized macropore surface.


Asunto(s)
Anticuerpos Monoclonales , Dextranos , Animales , Cricetinae , Hidrogeles/química , Cricetulus , Péptidos/química , Trastuzumab/química
12.
ACS Bio Med Chem Au ; 3(3): 252-260, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37363081

RESUMEN

Hydrogels have been extensively researched for over 60 years for their limitless applications in biomedical research. In this study, porous hydrogel microparticles (PHMPs) made of poly(ethylene glycol) diacrylamide were investigated for their potential as a delivery platform for therapeutic proteins. These particles are made using hard calcium carbonate (CaCO3) templates, which can easily be dissolved under acidic conditions. After optimization of the synthesis processes, both CaCO3 templates and PHMPs were characterized using a wide range of techniques. Then, using an array of proteins with different physicochemical properties, the encapsulation efficiency of proteins in PHMPs was evaluated under different conditions. Strategies to enhance protein encapsulation via modulation of particle surface charge to increase electrostatic interactions and conjugation using EDC/NHS chemistry were also investigated. Conjugation of bovine serum albumin to PHMPs showed increased encapsulation and diminished release over time, highlighting the potential of PHMPs as a versatile delivery platform for therapeutic proteins such as enzymes or antibodies.

13.
J Colloid Interface Sci ; 641: 929-941, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36989819

RESUMEN

Polymer-metal nanocomposites have widespread applications in biomedical fields such as imaging, catalysis, and drug delivery. These particles are characterized by combined organic and inorganic properties. Specifically, photothermal nanocomposites incorporating polymeric and plasmonic nanoparticles (NPs) have been designed for both triggered drug release and as imaging agents. However, the usual design of nanocomposites confers characteristic issues, among which are the decrease of optical properties and resulting low photothermal efficiency, as well as interactions with loaded drugs. Herein, we report the design of a core-satellite polymer-metal nanocomposite assembled by coiled-coil peptides and its superior photothermal efficiency compared to electrostatic-driven nanocomposites which is the standard design. We also found that the orientation of gold nanorods on the surface of polymeric NPs is of importance in the final photothermal efficiency and could be exploited for various applications. Our findings provide an alternative to current wrapping and electrostatic assembly of nanocomposites with the help of coiled-coil peptides and an improvement of the control over core-satellite assemblies with plasmonic NPs. It paves the way to highly versatile assemblies due to the nature of coiled-coil peptides to be easily modified and sensitive to pH or temperature.


Asunto(s)
Nanocompuestos , Nanopartículas , Polímeros , Sistemas de Liberación de Medicamentos , Péptidos/química , Oro/química , Nanocompuestos/química
14.
Drug Discov Today ; 28(3): 103488, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36623796

RESUMEN

The burden of osteoarthritis (OA), one of the major causes of functional disabilities in humans and animals, continues to increase worldwide while no disease-modifying OA drugs (DMOADs) that either slow down or reverse disease progression have been made available. Here, we provide a brief overview of recent advances in: designing new OA drug delivery approaches, focusing on lubrication-based biomaterials and drug delivery systems, such as hydrogels, liposomes, dendrimers, micro- and nanoparticles; using either large (horse) or small (zebrafish) relevant animal models to evaluate new therapeutic strategies; and OA in vitro modeling, focusing on 3D (organoid) models of cartilage regarding the Replace, Reduce and Refine (3R) principle of animal experimentation.


Asunto(s)
Osteoartritis , Pez Cebra , Humanos , Animales , Caballos , Osteoartritis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
15.
ACS Appl Bio Mater ; 6(2): 865-873, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36625035

RESUMEN

Synergistic interactions between 3,4-dihydroxyphenylalanine (Dopa, Y*), cationic residues, and the aromatic rings have been recently highlighted as influential factors that enhance the underwater adhesion strength of mussel foot proteins and their derivatives. In this study, we report the first ever evidence of a cation-catechol-benzene ternary synergy between Y*, lysine (Lys, K), and phenylalanine (Phe, F) in adhesive peptides. We synthesized three hexapeptides containing a different combination of Y*, K, and F, i.e., (KY*)3, (KF)3, and (KY*F)2, respectively, exploring the relationship between the cohesive performance and molecular architecture of peptides. The peptide with the (KY*F)2 sequence displays the strongest underwater cohesion energy of 10.3 ± 0.3 mJ m-2 from direct nanoscale surface force measurements. Combined with molecular dynamics simulation, we demonstrated that there are more bonding interactions (including cation-π, π-π, and hydrogen bond interactions) in (KY*F)2 compared to the other two peptides. In addition, peptide (KY*F)2 still shows the strongest cohesive energies of 7.6 ± 0.7 and 3.7 ± 0.5 mJ m-2 in acidic and high-ionic strength environments, respectively, although the cohesive energy decreases compared to the value in pure water. Our results further explain the underwater cohesion mechanisms combining multiple interactions and offer insights on designing Dopa containing underwater adhesives.


Asunto(s)
Dihidroxifenilalanina , Lisina , Lisina/química , Dihidroxifenilalanina/química , Péptidos/química , Proteínas/química , Adhesivos/química , Cationes
16.
J Colloid Interface Sci ; 635: 50-58, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36577355

RESUMEN

This study presents novel adhesive materials that use cation-π interactions to achieve highly specific cohesive interaction under water. The materials are short length peptides based on the FKF motif flanked by different side groups. Using the surface forces apparatus, we show that the composition of the side group allows to finely tune the strength of the cohesive and adhesive energies of the peptide and its specificity, meaning its capacity to bind strongly only to substrates bearing the same peptide. The interfacial properties of these adhesive peptides are shown to strongly depend on the composition of the deposition solvent, with DMSO being the solvent of choice to achieve high cohesive and adhesive energies. This result was correlated with the supramolecular structure of the peptide film and confirmed that needle-like structures can significantly enhance the adhesion of the material. Altogether, we showed that cation-π interaction can be used efficiently to create adhesive materials that incorporate features already known for underwater adhesives such as activation via solvent displacement, as well as new ones such as specificity and supramolecular structure enhanced adhesion.


Asunto(s)
Adhesivos , Péptidos , Péptidos/química , Adhesivos/química , Cationes/química , Solventes
17.
ACS Nano ; 16(12): 21583-21599, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36516979

RESUMEN

Drug nanocarriers (NCs) capable of crossing the vascular endothelium and deeply penetrating into dense tissues of the CNS could potentially transform the management of neurological diseases. In the present study, we investigated the interaction of bottle-brush (BB) polymers with different biological barriers in vitro and in vivo and compared it to nanospheres of similar composition. In vitro internalization and permeability assays revealed that BB polymers are not internalized by brain-associated cell lines and translocate much faster across a blood-brain barrier model compared to nanospheres of similar hydrodynamic diameter. These observations performed under static, no-flow conditions were complemented by dynamic assays performed in microvessel arrays on chip and confirmed that BB polymers can escape the vasculature compartment via a paracellular route. BB polymers injected in mice and zebrafish larvae exhibit higher penetration in brain tissues and faster extravasation of microvessels located in the brain compared to nanospheres of similar sizes. The superior diffusivity of BBs in extracellular matrix-like gels combined with their ability to efficiently cross endothelial barriers via a paracellular route position them as promising drug carriers to translocate across the blood-brain barrier and penetrate dense tissue such as the brain, two unmet challenges and ultimate frontiers in nanomedicine.


Asunto(s)
Polímeros , Pez Cebra , Ratones , Animales , Polímeros/metabolismo , Pez Cebra/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Transporte Biológico
18.
Acta Biomater ; 153: 190-203, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113720

RESUMEN

Macroporous hydrogels possess a vast potential for various applications in the biomedical field. However, due to their large pore size allowing for unrestricted diffusion in the macropore network, macroporous hydrogels alone are not able to efficiently capture and release biomolecules in a controlled manner. There is thus a need for biofunctionalized, affinity-based gels that can efficiently load and release biomolecules in a sustained and controlled manner. For this purpose, we report here the use of a E/K coiled-coil affinity pair for the controlled capture and delivery of growth factors from highly interconnected, macroporous dextran hydrogels. By conjugating the Kcoil peptide to the dextran backbone, we achieved controlled loading and release of Ecoil-tagged Epidermal and Vascular Endothelial Growth Factors. To finely tune the behavior of the gels, we propose four control parameters: (i) macropore size, (ii) Kcoil grafting density, (iii) Ecoil valency and (iv) E/K affinity. We demonstrate that Kcoil grafting can produce a 20-fold increase in passive growth factor capture by macroporous dextran gels. Furthermore, we demonstrate that our gels can release as little as 20% of the loaded growth factors over one week, while retaining bioactivity. Altogether, we propose a versatile, highly tunable platform for the controlled delivery of growth factors in biomedical applications. STATEMENT OF SIGNIFICANCE: This work presents a highly tunable platform for growth factor capture and sustained delivery using affinity peptides in macroporous, fully interconnected dextran hydrogels. It addresses several ongoing challenges by presenting: (i) a versatile platform for the delivery of a wide range of stable, bioactive molecules, (ii) a passive, affinity-based loading of growth factors in the platform, paving the way for in situ (re)loading of the device and (iii) four different control parameters to finely tune growth factor capture and release. Altogether, our macroporous dextran hydrogels have a vast potential for applications in controlled delivery, tissue engineering and regenerative medicine.


Asunto(s)
Dextranos , Hidrogeles , Hidrogeles/farmacología , Hidrogeles/química , Dextranos/química , Ingeniería de Tejidos , Péptidos y Proteínas de Señalización Intercelular , Péptidos
19.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012214

RESUMEN

Osteoarthritis (OA) is a degenerative and heterogeneous disease that affects all types of joint structures. Current clinical treatments are only symptomatic and do not manage the degenerative process in animals or humans. One of the new orthobiological treatment strategies being developed to treat OA is the use of drug delivery systems (DDS) to release bioactive molecules over a long period of time directly into the joint to limit inflammation, control pain, and reduce cartilage degradation. Two vasoactive peptides, endothelin-1 and bradykinin, play important roles in OA pathogenesis. In this study, we investigated the effects of two functionalized nanogels as DDS. We assessed the effect of chitosan functionalized with a type A endothelin receptor antagonist (BQ-123-CHI) and/or hyaluronic acid functionalized with a type B1 bradykinin receptor antagonist (R-954-HA). The biocompatibility of these nanogels, alone or in combination, was first validated on equine articular chondrocytes cultured under different oxic conditions. Further, in an OA equine organoid model via induction with interleukin-1 beta (IL-1ß), a combination of BQ-123-CHI and R-954-HA (BR5) triggered the greatest decrease in inflammatory and catabolic markers. In basal and OA conditions, BQ-123-CHI alone or in equimolar combinations with R-954-HA had weak pro-anabolic effects on collagens synthesis. These new nanogels, as part of a composite DDS, show promising attributes for treating OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Antagonistas de los Receptores de Bradiquinina/metabolismo , Antagonistas de los Receptores de Bradiquinina/farmacología , Antagonistas de los Receptores de Bradiquinina/uso terapéutico , Cartílago/metabolismo , Cartílago Articular/metabolismo , Células Cultivadas , Condrocitos/metabolismo , Endotelina-1/metabolismo , Caballos , Humanos , Interleucina-1beta/metabolismo , Nanogeles , Organoides/metabolismo , Osteoartritis/metabolismo
20.
Adv Mater ; 34(38): e2203354, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35901787

RESUMEN

A new theoretical framework that enables the use of differential dynamic microscopy (DDM) in fluorescence imaging mode to quantify in situ protein adsorption onto nanoparticles (NP) while simultaneously monitoring for NP aggregation is proposed. This methodology is used to elucidate the thermodynamic and kinetic properties of the protein corona (PC) in vitro and in vivo. The results show that protein adsorption triggers particle aggregation over a wide concentration range and that the formed aggregate structures can be quantified using the proposed methodology. Protein affinity for polystyrene (PS) NPs is observed to be dependent on particle concentration. For complex protein mixtures, this methodology identifies that the PC composition changes with the dilution of serum proteins, demonstrating a Vroman effect never quantitatively assessed in situ on NPs. Finally, DDM allows monitoring of the evolution of the PC in vivo. This results show that the PC composition evolves significantly over time in zebrafish larvae, confirming the inherently dynamic nature of the PC. The performance of the developed methodology allows to obtain quantitative insights into nano-bio interactions in a vast array of physiologically relevant conditions that will serve to further improve the design of nanomedicine.


Asunto(s)
Nanopartículas , Corona de Proteínas , Animales , Proteínas Sanguíneas , Nanopartículas/química , Poliestirenos/química , Corona de Proteínas/química , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...