Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 37(13): 110159, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965435

RESUMEN

Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV+) and somatostatin-expressing (SST+), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesize that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We find that while suppressing either interneuron class increases DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increases local field potential signatures of coupling from CA3 to CA1 and decreases signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons has the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Somatostatina/metabolismo , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Giro Dentado/citología , Corteza Entorrinal/citología , Femenino , Neuronas GABAérgicas/citología , Interneuronas/citología , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Cell Rep ; 30(7): 2349-2359.e7, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075768

RESUMEN

Medial entorhinal cortex contains neural substrates for representing space. These substrates include grid cells that fire in repeating locations and increase in scale progressively along the dorsal-to-ventral entorhinal axis, with the physical distance between grid firing nodes increasing from tens of centimeters to several meters in rodents. Whether the temporal scale of grid cell spiking dynamics shows a similar dorsal-to-ventral organization remains unknown. Here, we report the presence of a dorsal-to-ventral gradient in the temporal spiking dynamics of grid cells in behaving mice. This gradient in bursting supports the emergence of a dorsal grid cell population with a high signal-to-noise ratio. In vitro recordings combined with a computational model point to a role for gradients in non-inactivating sodium conductances in supporting the bursting gradient in vivo. Taken together, these results reveal a complementary organization in the temporal and intrinsic properties of entorhinal cells.


Asunto(s)
Corteza Entorrinal/metabolismo , Neuronas/metabolismo , Topografía Médica/métodos , Animales , Femenino , Masculino , Ratones , Modelos Neurológicos
3.
Nat Neurosci ; 21(2): 270-282, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29335607

RESUMEN

Medial entorhinal cortex (MEC) grid cells fire at regular spatial intervals and project to the hippocampus, where place cells are active in spatially restricted locations. One feature of the grid population is the increase in grid spatial scale along the dorsal-ventral MEC axis. However, the difficulty in perturbing grid scale without impacting the properties of other functionally defined MEC cell types has obscured how grid scale influences hippocampal coding and spatial memory. Here we use a targeted viral approach to knock out HCN1 channels selectively in MEC, causing the grid scale to expand while leaving other MEC spatial and velocity signals intact. Grid scale expansion resulted in place scale expansion in fields located far from environmental boundaries, reduced long-term place field stability and impaired spatial learning. These observations, combined with simulations of a grid-to-place cell model and position decoding of place cells, illuminate how grid scale impacts place coding and spatial memory.


Asunto(s)
Mapeo Encefálico , Corteza Entorrinal/citología , Células de Red/fisiología , Vías Nerviosas/fisiología , Células de Lugar/fisiología , Percepción Espacial/fisiología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Electroencefalografía , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/deficiencia , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Fosfopiruvato Hidratasa/metabolismo , Canales de Potasio/deficiencia , Canales de Potasio/genética
4.
J Neurosci ; 33(11): 4976-87, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23486968

RESUMEN

Na channels that generate resurgent current express an intracellular endogenous open-channel blocking protein, whose rapid binding upon depolarization and unbinding upon repolarization minimizes fast and slow inactivation. Na channels also bind exogenous compounds, such as lidocaine, which functionally stabilize inactivation. Like the endogenous blocking protein, these use-dependent inhibitors bind most effectively at depolarized potentials, raising the question of how lidocaine-like compounds affect neurons with resurgent Na current. We therefore recorded lidocaine inhibition of voltage-clamped, tetrodotoxin-sensitive Na currents in mouse Purkinje neurons, which express a native blocking protein, and in mouse hippocampal CA3 pyramidal neurons with and without a peptide from the cytoplasmic tail of NaVß4 (the ß4 peptide), which mimics endogenous open-channel block. To control channel states during drug exposure, lidocaine was applied with rapid-solution exchange techniques during steps to specific voltages. Inhibition of Na currents by lidocaine was diminished by either the ß4 peptide or the native blocking protein. In peptide-free CA3 cells, prolonging channel opening with a site-3 toxin, anemone toxin II, reduced lidocaine inhibition; this effect was largely occluded by open-channel blockers, suggesting that lidocaine binding is favored by inactivation but prevented by open-channel block. In constant 100 µm lidocaine, current-clamped Purkinje cells continued to fire spontaneously. Similarly, the ß4 peptide reduced lidocaine-dependent suppression of spiking in CA3 neurons in slices. Thus, the open-channel blocking protein responsible for resurgent current acts as a natural antagonist of lidocaine. Neurons with resurgent current may therefore be less susceptible to use-dependent Na channel inhibitors used as local anesthetic, antiarrhythmic, and anticonvulsant drugs.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Lidocaína/farmacología , Neuronas/efectos de los fármacos , Canales de Sodio/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/efectos de los fármacos , Región CA1 Hipocampal/citología , Venenos de Cnidarios/farmacología , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Masculino , Ratones , Neuronas/fisiología , Técnicas de Placa-Clamp , Péptidos/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química
5.
J Neurophysiol ; 109(10): 2528-41, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23446695

RESUMEN

Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17-21 mouse cerebellum. Currents were evoked by endogenous Ca influx with approximately physiological Ca buffering. Purkinje somata expressed voltage-activated, Cd-sensitive KCa currents with iberiotoxin (IBTX)-sensitive (>100 nS) and IBTX-insensitive (>75 nS) components. IBTX-sensitive currents activated and partially inactivated within milliseconds. Rapid, incomplete macroscopic inactivation was also evident during 50- or 100-Hz trains of 1-ms depolarizations. In contrast, IBTX-insensitive currents activated more slowly and did not inactivate. These currents were insensitive to the small- and intermediate-conductance KCa channel blockers apamin, scyllatoxin, UCL1684, bicuculline methiodide, and TRAM-34, but were largely blocked by 1 mM tetraethylammonium. The underlying channels had single-channel conductances of ∼150 pS, suggesting that the currents are carried by IBTX-resistant (ß4-containing) large-conductance KCa (BK) channels. IBTX-insensitive currents were nevertheless increased by small-conductance KCa channel agonists EBIO, chlorzoxazone, and CyPPA. During trains of brief depolarizations, IBTX-insensitive currents flowed during interstep intervals, and the accumulation of interstep outward current was enhanced by EBIO. In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell firing associated with genetic ataxias.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Células de Purkinje/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Bencimidazoles/farmacología , Cadmio/farmacología , Calcio/metabolismo , Agonistas de los Canales de Calcio/farmacología , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Cerebelo/fisiología , Clorzoxazona/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Células de Purkinje/fisiología , Pirazoles/farmacología , Pirimidinas/farmacología
6.
Proc Natl Acad Sci U S A ; 107(27): 12357-62, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20566860

RESUMEN

Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The Na(V)beta4 (Scn4b) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the beta4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, Na(V)beta4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b. Knockdown of Scn4b, confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the beta4 peptide. The simplest interpretation is that Na(V)beta4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, Na(V)beta4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells.


Asunto(s)
Activación del Canal Iónico/fisiología , Neuronas/fisiología , Canales de Sodio/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Cerebelo/citología , Expresión Génica , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Técnicas de Placa-Clamp , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética , Tetrodotoxina/farmacología , Factores de Tiempo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje
7.
Mol Microbiol ; 45(2): 555-68, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12123464

RESUMEN

Asparagine chemotaxis in Bacillus subtilis appears to involve two partially redundant adaptation mechanisms: a receptor methylation-independent process that operates at low attractant concentrations and a receptor methylation-dependent process that is required for optimal responses to high concentrations. In order to elucidate these processes, chemotactic responses were assessed for strains expressing methylation-defective mutations in the asparagine receptor, McpB, in which all 10 putative receptors (10del), five receptors (5del) or only the native copy of mcpB were deleted. This was done in both the presence and the absence of the methylesterase CheB. We found that: (i) only responses to high concentrations of asparagine were impaired; (ii) the presence of all heterologous receptors fully compensated for this defect, whereas responses progressively worsened as more receptors were taken away; (iii) methyl-group turnover occurred on heterologous receptors after the addition of asparagine, and these methylation changes were required for the restoration of normal swimming behaviour; (iv) in the absence of the methyleste-rase, the presence of heterologous receptors in some cases caused impaired chemotaxis; and (v) either a certain threshold number of receptors must be present to promote basal CheA activity, or one or more of the receptors missing in the 10del background (but present in the 5del background) is required for establishing basal CheA activity. Taken together, these findings suggest that many or all chemoreceptors work as an ensemble that constitutes a robust chemotaxis system. We propose that the ability of non-McpB receptors to compensate for the methylation-defective McpB mutations involves lateral transmission of the adapted conformational change across the ensemble.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/fisiología , Células Quimiorreceptoras/fisiología , Quimiotaxis/fisiología , Transactivadores , Adaptación Fisiológica/genética , Sustitución de Aminoácidos , Asparagina/farmacología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Hidrolasas de Éster Carboxílico/fisiología , Quimiotaxis/genética , Eliminación de Gen , Prueba de Complementación Genética , Sustancias Macromoleculares , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Metanol/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Metilación , Mutagénesis Sitio-Dirigida , Conformación Proteica , Procesamiento Proteico-Postraduccional , Receptor Cross-Talk
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA