Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4920, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858353

RESUMEN

The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.


Asunto(s)
Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Células del Estroma , Útero , Femenino , Animales , Útero/metabolismo , Células del Estroma/metabolismo , Ratones , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Interferones/metabolismo , Interferones/genética , Retrovirus Endógenos/genética , Apoptosis/genética , Ratones Endogámicos C57BL , Muerte Celular/genética , Necroptosis/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Histonas/metabolismo , Análisis de la Célula Individual , Ratones Noqueados , Diferenciación Celular/genética
2.
Cell Rep ; 43(6): 114246, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38762885

RESUMEN

The decidua plays a crucial role in providing structural and trophic support to the developing conceptus before placentation. Following embryo attachment, embryonic components intimately interact with the decidual tissue. While evidence indicates the participation of embryo-derived factors in crosstalk with the uterus, the extent of their impact on post-implantation decidual development requires further investigation. Here, we utilize transgenic mouse models to selectively eliminate primary trophoblast giant cells (pTGCs), the embryonic cells that interface with maternal tissue at the forefront. pTGC ablation impairs decidualization and compromises decidual interferon response and lipid metabolism. Mechanistically, pTGCs release factors such as interferon kappa (IFNK) to strengthen the decidual interferon response and lipoprotein lipase (LPL) to enhance lipid accumulation within the decidua, thereby promoting decidualization. This study presents genetic and metabolomic evidence reinforcing the proactive role of pTGC-derived factors in mobilizing maternal resources to strengthen decidualization, facilitating the normal progression of early pregnancy.


Asunto(s)
Decidua , Interferones , Metabolismo de los Lípidos , Trofoblastos , Femenino , Animales , Trofoblastos/metabolismo , Decidua/metabolismo , Ratones , Embarazo , Interferones/metabolismo , Endometrio/metabolismo , Transducción de Señal , Ratones Transgénicos
3.
Cell Death Differ ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698061

RESUMEN

Uterine luminal epithelia (LE), the first layer contacting with the blastocyst, acquire receptivity for normal embryo implantation. Besides the well-accepted transcriptional regulation dominated by ovarian estrogen and progesterone for receptivity establishment, the involvement of epigenetic mechanisms remains elusive. This study systematically profiles the transcriptome and genome-wide H3K27me3 distribution in the LE throughout the preimplantation. Combining genetic and pharmacological approaches targeting the PRC2 core enzyme Ezh1/2, we demonstrate that the defective remodeling of H3K27me3 in the preimplantation stage disrupts the differentiation of LE, and derails uterine receptivity, resulting in implantation failure. Specifically, crucial epithelial genes, Pgr, Gata2, and Sgk1, are transcriptionally silenced through de novo deposition of H3K27me3 for LE transformation, and their sustained expression in the absence of H3K27me3 synergistically confines the nuclear translocation of FOXO1. Further functional studies identify several actin-associated genes, including Arpin, Tmod1, and Pdlim2, as novel direct targets of H3K27me3. Their aberrantly elevated expression impedes the morphological remodeling of LE, a hindrance alleviated by treatment with cytochalasin D which depolymerizes F-actin. Collectively, this study uncovers a previously unappreciated epigenetic regulatory mechanism for the transcriptional silencing of key LE genes via H3K27me3, essential for LE differentiation and thus embryo implantation.

4.
Autophagy ; 20(1): 58-75, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584546

RESUMEN

ABBREVIATIONS: ACTB: actin beta; AREG: amphiregulin; ATP6V0A4: ATPase, H+ transporting, lysosomal V0 subunit A4; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CLDN1: claudin 1; CTSB: cathepsin B; DEGs: differentially expressed genes; E2: 17ß-estradiol; ESR: estrogen receptor; GATA2: GATA binding protein 2; GLA: galactosidase, alpha; GO: gene ontology; HBEGF: heparin-binding EGF-like growth factor; IGF1R: insulin-like growth factor 1 receptor; Ihh: Indian hedgehog; ISH: in situ hybridization; LAMP1: lysosomal-associated membrane protein 1; LCM: laser capture microdissection; Le: lumenal epithelium; LGMN: legumain; LIF: leukemia inhibitory factor; LIFR: LIF receptor alpha; MSX1: msh homeobox 1; MUC1: mucin 1, transmembrane; P4: progesterone; PBS: phosphate-buffered saline; PCA: principal component analysis; PPT1: palmitoyl-protein thioesterase 1; PGR: progesterone receptor; PSP: pseudopregnancy; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; qPCR: quantitative real-time polymerase chain reaction; SP: pregnancy; TFEB: transcription factor EB.


Asunto(s)
Proteínas Hedgehog , Proteostasis , Embarazo , Femenino , Humanos , Proteínas Hedgehog/metabolismo , Autofagia , Útero/metabolismo , Epitelio/metabolismo , Ciclooxigenasa 2/metabolismo , Blastocisto/metabolismo , Lisosomas/metabolismo
5.
Heliyon ; 9(12): e22584, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144356

RESUMEN

The most common reason for cancer-related death globally is predicted to be pancreatic cancer (PC), one of the deadliest cancers. The CCCTC-binding factor (CTCF) regulates the three-dimensional structure of chromatin, was reported to be highly regulated in various malignancies. However, the underlying biological functions and possible pathways via which CTCF promotes PC progression remain unclear. Herein, we examined the CTCF function in PC and discovered that CTCF expression in PC tissues was significantly raised compared to neighboring healthy tissues. Additionally, Kaplan-Meier survival analysis demonstrated a strong connection between elevated CTCF expression and poor patient prognosis. A study of the ROC curve (receiver operating characteristic) revealed an AUC value for CTCF of 0.968. Subsequent correlation analysis exhibited a strong relationship between immunosuppression and CTCF expression in PC. CTCF knockdown significantly inhibited the malignant biological process of PC in vitro and in vivo, suggesting that CTCF may be a potential PC treatment target. We also identified the FGD5 antisense RNA 1 (FGD5-AS1)/miR-19a-3p axis as a possible upstream mechanism for CTCF overexpression. In conclusion, our data suggest that ceRNA-mediated CTCF overexpression contributes to the suppression of anti-tumor immune responses in PC and could be a predictive biomarker and potential PC treatment target.

6.
J Exp Clin Cancer Res ; 42(1): 339, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098044

RESUMEN

BACKGROUND: Within the tumor immune microenvironment (TME), tumor-associated macrophages (TAMs) are crucial in modulating polarization states to influence cancer development through metabolic reprogramming. While long non-coding RNAs (lncRNAs) have been shown to play a pivotal role in the progression of various cancers, the underlying mechanisms by which lncRNAs alter M2 polarization through macrophage metabolism remodeling remain unelucidated. METHODS: RNA sequencing was used to screen for differentially expressed lncRNAs in TAMs and normal tissue-resident macrophages (NTRMs) isolated from pancreatic ductal adenocarcinoma (PDAC) tissues, whilst RT-qPCR and FISH were employed to detect the expression level of SNHG17. Moreover, a series of in vivo and in vitro experiments were conducted to assess the functions of SNHG17 from TAMs in the polarization and glycolysis of M2-like macrophages and in the proliferation and metastasis of pancreatic cancer cells (PCs). Furthermore, Western blotting, RNA pull-down, mass spectrometry, RIP, and dual-luciferase assays were utilized to explore the underlying mechanism through which SNHG17 induces pro-tumor macrophage formation. RESULTS: SNHG17 was substantially enriched in TAMs and was positively correlated with a worse prognosis in PDAC. Meanwhile, functional assays determined that SNHG17 promoted the malignant progression of PCs by enhancing M2 macrophage polarization and anaerobic glycolysis. Mechanistically, SNHG17 could sponge miR-628-5p to release PGK1 mRNA and concurrently interact with the PGK1 protein, activating the pro-tumorigenic function of PGK1 by enhancing phosphorylation at the T168A site of PGK1 through ERK1/2 recruitment. Lastly, SNHG17 knockdown could reverse the polarization status of macrophages in PDAC. CONCLUSIONS: The present study illustrated the essential role of SNHG17 and its molecular mechanism in TAMs derived from PDAC, indicating that SNHG17 might be a viable target for PDAC immunotherapy.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , Fosforilación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Anaerobiosis , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Macrófagos/metabolismo , Glucólisis , MicroARNs/genética , Microambiente Tumoral , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo
7.
Nat Commun ; 14(1): 7356, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963860

RESUMEN

The timely onset of female parturition is a critical determinant for pregnancy success. The highly heterogenous maternal decidua has been increasingly recognized as a vital factor in setting the timing of labor. Despite the cell type specific roles in parturition, the role of the uterine epithelium in the decidua remains poorly understood. This study uncovers the critical role of epithelial SHP2 in parturition initiation via COX1 and COX2 derived PGF2α leveraging epithelial specific Shp2 knockout mice, whose disruption contributes to delayed parturition initiation, dystocia and fetal deaths. Additionally, we also show that there are distinct types of epithelium in the decidua approaching parturition at single cell resolution accompanied with profound epithelium reformation via proliferation. Meanwhile, the epithelium maintains the microenvironment by communicating with stromal cells and macrophages. The epithelial microenvironment is maintained by a close interaction among epithelial, stromal and macrophage cells of uterine stromal cells. In brief, this study provides a previously unappreciated role of the epithelium in parturition preparation and sheds lights on the prevention of preterm birth.


Asunto(s)
Fenómenos Bioquímicos , Trabajo de Parto , Nacimiento Prematuro , Animales , Femenino , Humanos , Recién Nacido , Ratones , Embarazo , Parto , Útero
8.
Heliyon ; 9(10): e20317, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37790961

RESUMEN

Similar to fullerenes, carbon nanotubes and graphene, carbon dots (CDs) are causing a lot of research work in their own right. CDs are a type of surface-passivated quantum dot that contain carbon atoms. Their distinctive characteristics, such as luminescent emission that varies with size and wavelength, resistance to photobleaching, easy biological binding, lack of toxicity, and economical production without the need for intricate synthetic processes, have led to a noteworthy surge in attention within the research community. Different techniques can be utilized to create these CDs, spanning from basic candle burning to laser ablation. This review article delves into the principles of fluorescence technology, providing insights into how different synthesis methods of quantum dots impact their luminescent properties. Additionally, it highlights the latest applications of quantum dots in catalysis and biomedical fields, with special emphasis on the current status of luminescent properties in biology and chemistry. Towards the end, the article discusses the limitations of quantum dots in current practical applications, pointing out that CDs hold promising potential for future applications.

9.
iScience ; 26(10): 107796, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37720083

RESUMEN

The underlying mechanisms governing parturition remain largely elusive due to limited knowledge of parturition preparation and initiation. Accumulated evidences indicate that maternal decidua plays a critical role in parturition initiation. To comprehensively decrypt the cell heterogeneity in decidua approaching parturition, we investigate the roles of various cell types in mouse decidua process and reveal previously unappreciated insights in parturition initiation utilizing single-cell RNA sequencing (scRNA-seq). We enumerate the cell types in decidua and identity five different stromal cells populations and one decidualized stromal cells. Furthermore, our study unravels that stromal cells prepare for parturition by regulating local retinol acid (RA) synthesis. RA supplement decreases expression of extracellular matrix-related genes in vitro and accelerates the timing of parturition in vivo. Collectively, the discovery of contribution of stromal cells in parturition expands current knowledge about parturition and opens up avenues for the intervention of preterm birth (PTB).

10.
Virus Res ; 331: 199111, 2023 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-37062496

RESUMEN

Pseudorabies (PR) and classical swine fever (CSF) are economically important infectious diseases in pigs. Most pig farms in China are vaccinated against these two diseases. Gene-deleted pseudorabies virus (PRV) can be used to develop promising and economical multivalent live attenuated viral vector vaccines. It has been reported that recombinant PRV can express a truncated E2 protein (1-338 aa), but it has not been reported that recombinant PRV can express a full-length E2 protein. We constructed nine groups of E2 proteins with different expression forms and found that the E2 protein could be expressed in vitro only when the transmembrane region of E2 was removed and the signal peptide was added. Analysis of the transmembrane region of E2 revealed that the high hydrophobicity of the E2 transmembrane region was the main reason for its inability to express. By mutating an amino acid to reduce the hydrophobicity of the transmembrane region, it was found that the full-length mutant of E2 (E2FL-muta3 or E2FL-muta4) could be expressed. The expressed full-length mutant E2 could also localize to the cell membrane. Mice immunized with a PRV vector vaccine expressing E2FL-muta3 or E2FL-muta4 developed specific cellular immunity to the E2 protein and stimulated higher levels of E2 antibody than mice immunized with a PRV vector expressing truncated E2. After immunizing the rabbits, the lethal challenge by PRV-ZJ2013 and the febrile response elicited by CSFV were simultaneously prevented. These results suggest that rPRV-dTK/gE-E2FL-muta4 is a promising bivalent vaccine against CSFV and PRV infections.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Ratones , Conejos , Herpesvirus Suido 1/genética , Virus de la Fiebre Porcina Clásica/genética , Aminoácidos/genética , Vacunas Virales/genética , Anticuerpos Antivirales , Inmunización , Seudorrabia/prevención & control , Mutación , Proteínas del Envoltorio Viral/genética
11.
Front Immunol ; 14: 1096733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845096

RESUMEN

Immune cells, including T and B cells, are key factors in the success of liver transplantation. And the repertoire of T cells and B cells plays an essential function in mechanism of the immune response associated with organ transplantation. An exploration of their expression and distribution in donor organs could contribute to a better understanding of the altered immune microenvironment in grafts. In this study, using single-cell 5' RNA sequence and single-cell T cell receptor (TCR)/B cell receptor (BCR) repertoire sequence, we profiled immune cells and TCR/BCR repertoire in three pairs of donor livers pre- and post-transplantation. By annotating different immune cell types, we investigated the functional properties of monocytes/Kupffer cells, T cells and B cells in grafts. Bioinformatic characterization of differentially expressed genes (DEGs) between the transcriptomes of these cell subclusters were performed to explore the role of immune cells in inflammatory response or rejection. In addition, we also observed shifts in TCR/BCR repertoire after transplantation. In conclusion, we profiled the immune cell transcriptomics and TCR/BCR immune repertoire of liver grafts during transplantation, which may offer novel strategies for monitoring recipient immune function and treatment of rejection after liver transplantation.


Asunto(s)
Trasplante de Hígado , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Análisis de Expresión Génica de una Sola Célula , Donadores Vivos , Receptores de Antígenos de Linfocitos T/genética , Hígado , Receptores de Antígenos de Linfocitos B/genética
12.
J Cell Mol Med ; 27(5): 659-671, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752127

RESUMEN

Abnormal energy metabolism is one of the characteristics of tumours. In the last few years, more and more attention is being paid to the role and regulation of tumour aerobic glycolysis. Cancer cells display enhanced aerobic glycolysis, also known as the Warburg effect, whereby tumour cells absorb glucose to produce a large amount of lactic acid and energy under aerobic conditions to favour tumour proliferation and metastasis. In this study, we report that the haploinsufficient tumour suppressor ASPP2, can inhibit HCC growth and stemness characteristics by regulating the Warburg effect through the WNT/ß-catenin pathway. we performed glucose uptake, lactate production, pyruvate production, ECAR and OCR assays to verify ASPP2 can inhibit glycolysis in HCC cells. The expression of ASPP2 and HK2 was significantly inversely correlated in 80 HCC tissues. Our study reveals downregulation of ASPP2 can promote the aerobic glycolysis metabolism pathway, increasing HCC proliferation, glycolysis metabolism, stemness and drug resistance. This ASPP2-induced inhibition of glycolysis metabolism depends on the WNT/ß-catenin pathway. ASPP2-regulated Warburg effect is associated with tumour progression and provides prognostic value. and suggest that may be promising as a new therapeutic strategy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Neoplasias Hepáticas/patología , Vía de Señalización Wnt/genética , Proteínas Reguladoras de la Apoptosis
13.
Antiviral Res ; 211: 105548, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702445

RESUMEN

Pseudorabies (PR) and classical swine fever (CSF) are economically important infectious diseases of pigs. Most pig farms in China are immunized against these two diseases. Here, we describe a stabilized E2 protein as an immunogen inserted into the PRV genome as a bivalent live virus-vectored vaccine. The E2 protein has 48 variant sites, there are 2-5 candidate amino acids per variant site, and the relative energy contribution of each amino acid to E2 energy was calculated. Combined substitutions of amino acids at the neighbor variant site (neighbor substitution) were performed to obtain the E2 protein sequence with the lowest energy (stabilized E2). Multiple amino acid substitutions at 48 variant sites were performed, and the results were consistent with neighbor substitutions. The stabilized E2 sequence was obtained, and its energy decreased by 22 Rosetta Energy Units (REUs) compared with the original sequence. After the recombinant PRV expressing stabilized E2 of CSFV was constructed, the secretion efficiency of stabilized E2 was increased by 2.97 times, and the thermal stability was increased by 10.5 times. Immunization of mice resulted in a 2-fold increase in antibody production, and a balanced antibody level against subtype 1.1 and subtype 2.1d E2 was achieved. In rabbits immunized, the lethal challenge of PRV-ZJ and the fever response induced by CSFV could be prevented simultaneously. These findings suggest that rPRV-muta/287aaE2 is a promising bivalent vaccine against CSFV and PRV infections.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Herpesvirus Suido 1 , Seudorrabia , Vacunas Virales , Conejos , Animales , Porcinos , Ratones , Virus de la Fiebre Porcina Clásica/genética , Herpesvirus Suido 1/genética , Seudorrabia/prevención & control , Aminoácidos , Proteínas del Envoltorio Viral/genética , Anticuerpos Antivirales
14.
Cell Cycle ; 22(7): 818-828, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36482709

RESUMEN

Dimethyl fumarate (DMF), a therapeutic agent for relapsing-remitting multiple sclerosis, has cytoprotective and antioxidant effects. Ferroptosis, a pathological cell death process, is recently shown to play a vital part in ischemia-reperfusion injury (IRI). This study aimed to unveil the suppressive role of DMF on ferroptosis in liver IRI. The anti-ferroptosis effect of DMF on hepatic IRI was investigated using a liver IRI mouse model and a hypoxia-reoxygenation injury (HRI) model in alpha mouse liver (AML12) cells. Serum transaminase concentrations reflected liver function. Hematoxylin and eosin staining was used to assess liver damage. Cell viability was evaluated utilizing the CCK-8 assay. Malondialdehyde (MDA), the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, and BODIPY 581/591C11 were measured to estimate the injury caused by lipid peroxidation. Western blotting and real-time polymerase chain reaction (RT-PCR) were performed to explore the underlying molecular mechanisms. We demonstrated the anti-ferroptosis effects of DMF both in vivo and in vitro. DMF treatment ameliorated hepatic IRI. KEGG enrichment analysis and transmission electron microscopy revealed a close relationship between ferroptosis and liver IRI. Furthermore, DMF protected against HRI by inhibiting ferroptosis via activating the nuclear factor E2-related factor 2 (NRF2) pathway. Interestingly, NRF2 knockdown notably decreased the expression of SLC7A11 and HO-1 and blocked the anti-ferroptosis effects of DMF. DMF inhibits ferroptosis by activating the NRF2/SLC7A11/HO-1 axis and exerts a protective effect against hepatic IRI.


Asunto(s)
Dimetilfumarato , Daño por Reperfusión , Ratones , Animales , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Dimetilfumarato/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Hígado/metabolismo , Daño por Reperfusión/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-36058783

RESUMEN

BACKGROUND: Polydatin, a glucoside of resveratrol, has been shown to have protective effects against various diseases. However, little is known about its effect on hepatic ischemia-reperfusion (I/R) injury. This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism. METHODS: After gavage feeding polydatin once daily for a week, mice underwent a partial hepatic I/R procedure. Serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST), hematoxylin-eosin (H&E) and TdT-mediated dUTP nick-end labeling (TUNEL) staining were used to evaluate liver injury. The severity related to the inflammatory response and reactive oxygen species (ROS) production was also investigated. Furthermore, immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages. RESULTS: Compared with the I/R group, polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis. The oxidative stress marker (dihydroethidium fluorescence, malondialdehyde, superoxide dismutase and glutathione peroxidase) and I/R related inflammatory cytokines (interleukin-1ß, interleukin-10 and tumor necrosis factor-α) were significantly suppressed after polydatin treatment. In addition, the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro. Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway. CONCLUSIONS: Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NF-κB signaling.

16.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914132

RESUMEN

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Asunto(s)
Implantación del Embrión , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 14 Activada por Mitógenos , Progesterona , Útero , Animales , Implantación del Embrión/fisiología , Endometrio/metabolismo , Femenino , Infertilidad Femenina , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Fosforilación , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Útero/enzimología , Útero/metabolismo
17.
J Oncol ; 2022: 3982539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35578600

RESUMEN

Background: Ubiquitin conjugating enzyme E2S (UBE2S), a member of the ubiquitin-conjugating enzyme family, is known to play a pivotal role in tumorigenesis and progression in some tumor types. However, whether UBE2S plays an irreplaceable role in the immune-oncology context of tumorigenesis, prognosis, pathogenesis, immune regulation, and therapeutic response through certain common molecular mechanisms remains to be defined. The present pan-cancer study was intended to decipher the landscape of UBE2S in pathologic, immunological, and therapeutic aspects across various cancers. Methods: Data used for UBE2S analysis were obtained from TCGA database. The pan-cancer analysis was mainly focused on the expression patterns, prognostic values, mutation landscapes, biological pathways, tumor microenvironment remodeling, and therapeutic resistance of UBE2S using multiple databases including cBioPortal, Cancer Cell Line Encyclopedia (CCLE) database, Tumor Immune Estimation Resource (TIMER), and Gene Expression Profiling Interactive Analysis (GEPIA). External experimental validation was conducted to delineate the association of UBE2S with tumor phenotypes through assays of proliferation, colony formation, and migration. Data processing, statistical analysis, and plotting were performed using R software and GraphPad Prism software. Results: UBE2S was aberrantly expressed in almost all human cancers, and elevated UBE2S expression was unfavorably associated with the clinical pathological stage and prognosis. DNA methylation and RNA modification were significantly correlated with the UBE2S expression level. The results of enrichment analysis revealed that UBE2S positively regulated MYC, G2M cell cycle, and DNA repair pathways and negatively regulated adipogenesis, fatty acid metabolism, and heme metabolism. In addition, UBE2S exhibited a significantly positive correlation with myeloid-derived suppressor cell MDSC and Th2 subsets in almost all tumors analyzed. UBE2S could confer immune evasion via coexpressed immunoinhibitors and T cell exhaustion. Notably, a higher UBE2S expression indicated a higher level of stemness, TMB, MSI, and MMR deficiency and DNA methyltransferases, as well as chemotherapeutic resistance in various cancers. Notably, in vitro functional validation showed that UBE2S knockdown attenuated the phenotypes of proliferation, clonogenicity, and migration in hepatocellular carcinoma cells. Conclusions: Our study provided meaningful clues to support UBE2S as an immune-oncogenic molecule and shed light on potential applications of UBE2S in cancer detection, prognostic prediction, and therapeutic response assessment.

18.
J Cancer ; 13(6): 1985-2000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399734

RESUMEN

Gastric cancer (GC) is one of the most common malignant tumors with poor outcomes. Identification of new therapeutic targets is urgently needed. Accumulating evidence has shown that anti-silencing function 1b (ASF1b) contributes to the progression in multiple cancer types. However, detailed mechanisms of ASF1b tumorigenesis in gastric cancer remain elusive. This study showed that ASF1b was upregulated in GC tissues and remarkably correlated with TNM stage, histological grade and poor prognosis of GC. We induced down and up-regulation of ASF1b in GC cell lines and monitored the changes in their biological behavior. Furthermore, loss of ASF1b was efficient to suppress subcutaneous xenograft tumor growth in vivo. We demonstrate that ASF1b is involved in regulation of cell cycle and PI3K/AKT/mTOR signaling through experiments and database analysis. Mechanistically, ASF1b promoted the proliferation, migration and invasion of GC cells. Taken together, this study highlights the role of ASF1b, which provided new insights into the underlying mechanism of progression and metastasis in GC for the first time.

19.
Bioengineered ; 13(3): 7293-7302, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35260047

RESUMEN

Liver cancer is a common malignant tumor with high incidence and mortality rates. However, a reliable prognostic signature has not yet been confirmed. Circular RNAs (circRNAs) play a role in the development and prognosis of numerous malignancies as well as liver cancer. Therefore, identifying abnormally expressed circRNAs in liver cancer tissue is essential for early diagnosis and treatment. This study found that circular RNA circ SET domain containing 2 (circSETD2) is abnormally expressed in liver cancer tissues, but the role and molecular mechanismsin the occurrence and development of liver cancer are still unclear. The expression level of circSETD2 was evaluated through Quantitative Real-time Polymerase chain reaction (qRT-PCR) in cancerous liver tissues (30 cases), liver cancer cell lines and para-cancerous tissues. Knockdown and overexpression circSETD2 lentiviral vector was constructed and applied to transfect hepatoma cells. Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry and Transwell assay were used to examine the effects of circSETD2 overexpression or knockdown on liver cancer migration, invasion, cell cycle and cell proliferation. The tumourigenicity in vivo was utilized to assess the effect of circSETD2 on the proliferation of liver cancer cells. circSETD2 expression is lower in cell lines and liver cancer tissues. circSETD2 knockdown can considerably increase liver cancer cells' invasion, proliferation and colony formation. While In vitro and in vivo, circSETD2 overexpression shows opposite effect. Western blot showed that circSETD2 knockdown can considerably promote E-cadherin expression and inhibit Vimentin, N-cadherin, matrix metallopeptidase-9 (MMP-9) and MMP-2 expression. These findings improve our understanding of the mechanisms of liver cancer progression and will guide future development of therapeutic strategies against the disease by targeting circ-SETD2.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Dominios PR-SET , ARN Circular/genética
20.
Elife ; 112022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244538

RESUMEN

The establishment of pregnancy in human necessitates appropriate decidualization of stromal cells, which involves steroids regulated periodic transformation of endometrial stromal cells during the menstrual cycle. However, the potential molecular regulatory mechanism underlying the initiation and maintenance of decidualization in humans is yet to be fully elucidated. In this investigation, we document that SOX4 is a key regulator of human endometrial stromal cells decidualization by directly regulating FOXO1 expression as revealed by whole genomic binding of SOX4 assay and RNA sequencing. Besides, our immunoprecipitation and mass spectrometry results unravel that SOX4 modulates progesterone receptor (PGR) stability through repressing E3 ubiquitin ligase HERC4-mediated degradation. More importantly, we provide evidence that dysregulated SOX4-HERC4-PGR axis is a potential cause of defective decidualization and recurrent implantation failure in in-vitro fertilization (IVF) patients. In summary, this study evidences that SOX4 is a new and critical regulator for human endometrial decidualization, and provides insightful information for the pathology of decidualization-related infertility and will pave the way for pregnancy improvement.


Asunto(s)
Decidua , Receptores de Progesterona , Decidua/metabolismo , Endometrio , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Embarazo , Estabilidad Proteica , Receptores de Progesterona/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...