Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16855, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039111

RESUMEN

Accurate prediction of regional terrestrial water storage change (TWSA) is of great significance for water resources planning and management, and early warning of extreme climate disasters. Aiming at the problem that the conventional methods on prediction of TWSA time series are difficult to be accurate, the six typical regions are selected in China as examples, including the upper reaches of the Yangtze River (UYR), the southwest region (SWR), the Liaohe River Basin (LRB), the North China Plain (NCP), the Qinghai-Tibet Plateau (QTP), and the Pearl River Basin (PRB). The mascon product from GRACE/GRACE-FO provided by CSR is used to extract TWSA time series in six typical areas. The improved Back Propagation (BP) neural network, Long Short-Term Memory (LSTM) neural network and the latest Bidirectional LSTM (BiLSTM-attention) neural network model based on attention mechanism are proposed to predict and analyze the regional TWSA. In the experiment, the selection of the optimal model parameters such as the number of hidden layer nodes and the number of hidden units of the neural network model is tested and analyzed in detail. Meanwhile, the model prediction results are compared with the traditional least squares method and random forest (RF) prediction method. The root mean square error (RMSE), determination coefficient (R2), Nash-Sutcliffe efficiency coefficient (NSE) and mean absolute percentage error (MAPE) were used to evaluate the accuracy of the predicted results. The results show that the improved BP, LSTM and Bi-LSTM-attention neural network models all achieve higher prediction accuracy in UYR and SWR areas. RMSE is less than 2.641 cm, R2 is as high as 0.8 or more, NSE is above 0.6, and MAPE is within 0.1. Compared with the least square method, the RMSE of the predicted results from three neural network decreased by 0.998 cm, 0.700 cm and 0.7563 on average, and the R2 increased by 81.75%, 69.89% and 72% on average. Compared with RFML method, the RMSE from three neural network is reduced by 0.601 cm, 0.316 cm and 0.360, and R2 is increased by 38.20%, 24.60% and 27.06% on average. NSE and RMSE are improved to varying degrees in the above regions. It shows that the improved BP, LSTM and BiLSTM-attention model used can effectively predict TWSA. The research methods and results in this paper can provide important reference for the rational utilization of regional water resources and disaster risk assessment.

2.
Sci Rep ; 14(1): 5819, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461310

RESUMEN

Monitoring and predicting the regional groundwater storage (GWS) fluctuation is an essential support for effectively managing water resources. Therefore, taking Shandong Province as an example, the data from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) is used to invert GWS fluctuation from January 2003 to December 2022 together with Watergap Global Hydrological Model (WGHM), in-situ groundwater volume and level data. The spatio-temporal characteristics are decomposed using Independent Components Analysis (ICA), and the impact factors, such as precipitation and human activities, which are also analyzed. To predict the short-time changes of GWS, the Support Vector Machines (SVM) is adopted together with three commonly used methods Long Short-Term Memory (LSTM), Singular Spectrum Analysis (SSA), Auto-Regressive Moving Average Model (ARMA), as the comparison. The results show that: (1) The loss intensity of western GWS is significantly greater than those in coastal areas. From 2003 to 2006, GWS increased sharply; during 2007 to 2014, there exists a loss rate - 5.80 ± 2.28 mm/a of GWS; the linear trend of GWS change is - 5.39 ± 3.65 mm/a from 2015 to 2022, may be mainly due to the effect of South-to-North Water Diversion Project. The correlation coefficient between GRACE and WGHM is 0.67, which is consistent with in-situ groundwater volume and level. (2) The GWS has higher positive correlation with monthly Global Precipitation Climatology Project (GPCP) considering time delay after moving average, which has the similar energy spectrum depending on Continuous Wavelet Transform (CWT) method. In addition, the influencing facotrs on annual GWS fluctuation are analyzed, the correlation coefficient between GWS and in-situ data including the consumption of groundwater mining, farmland irrigation is 0.80, 0.71, respectively. (3) For the GWS prediction, SVM method is adopted to analyze, three training samples with 180, 204 and 228 months are established with the goodness-of-fit all higher than 0.97. The correlation coefficients are 0.56, 0.75, 0.68; RMSE is 5.26, 4.42, 5.65 mm; NSE is 0.28, 0.43, 0.36, respectively. The performance of SVM model is better than the other methods for the short-term prediction.

3.
ISA Trans ; 128(Pt A): 409-422, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34756462

RESUMEN

The accuracy and stability of navigation algorithms are crucial preconditions for underwater gravity matching aided navigation. To improve the matching accuracy and robustness of the matching algorithm, this paper presents a novel gravity matching navigation algorithm based on multiscale search and Hadamard transformed difference. The Hadamard transformation process was first time introduced in the new algorithm for the Walsh-Hadamard kernel function with the property of energy conservation. The gravity measurement sequences could be converted to the Hadamard domain; thus, the difference in numerical values, tendency, and spatial structure of the gravity measurement sequence were also a focus in the new algorithm, whereas only gravity statistical values were considered in classical matching algorithms. Therefore, with the proposed algorithm, the number of measurements necessary for matching can be effectively reduced, while improving the matching accuracy and success rate. In addition, a multiscale neighborhood search strategy based on contour constraints was designed to improve the matching efficiency, whereas a point-by-point global search was widely used in classical matching algorithms. Marine gravity maps of the South China Sea were used to construct the simulation tests. Simulation results show that under various conditions, the new algorithm has lower requirements for the number of measurements, measuring accuracy, and matching areas while exhibiting a higher navigation accuracy, matching success rate, and matching efficiency. Thus, the proposed algorithm could provide a new option for future practical applications of gravity matching aided navigation.

4.
Cancers (Basel) ; 11(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817450

RESUMEN

Transendothelial migration of malignant cells plays an essential role in tumor progression and metastasis. The present study revealed that treating human umbilical vein endothelial cells (HUVECs) with exosomes derived from metastatic breast cancer cells increased the number of cancer cells migrating through the endothelial cell layer and impaired the tube formation of HUVECs. Furthermore, the expression of intercellular junction proteins, including vascular endothelial cadherin (VE-cadherin) and zona occluden-1 (ZO-1), was reduced significantly in HUVECs treated with carcinoma-derived exosomes. Proteomic analyses revealed that thrombospondin-1 (TSP1) was highly expressed in breast cancer cell MDA-MB-231-derived exosomes. Treating HUVECs with TSP1-enriched exosomes similarly promoted the transendothelial migration of malignant cells and decreased the expression of intercellular junction proteins. TSP1-down regulation abolished the effects of exosomes on HUVECs. The migration of breast cancer cells was markedly increased in a zebrafish in vivo model injected with TSP1-overexpressing breast cancer cells. Taken together, these results suggest that carcinoma-derived exosomal TSP1 facilitated the transendothelial migration of breast cancer cells via disrupting the intercellular integrity of endothelial cells.

5.
Sensors (Basel) ; 17(12)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29261136

RESUMEN

An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1' × 1' marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment of IGNS was conducted using data obtained using marine gravimeter. The location accuracy under actual ocean conditions was 2.83 nautical miles (n miles). Several groups of simulated data of marine gravity anomalies were obtained by establishing normally distributed random error N ( u , σ 2 ) with varying mean u and noise variance σ 2 . Thereafter, the matching location of IGNS was simulated. The results show that the changes in u had little effect on the location accuracy. However, an increase in σ 2 resulted in a significant decrease in the location accuracy. A comparison between the actual ocean experiment and the simulation along the same route demonstrated the effectiveness of the proposed simulation method and quantitative analysis results. In addition, given the gravimeter (1-2 mGal accuracy) and the reference map (resolution 1' × 1'; accuracy 3-8 mGal), location accuracy of IGNS was up to reach ~1.0-3.0 n miles in the South China Sea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...