Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1334068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529181

RESUMEN

Introduction: Niacin is one of the essential vitamins for mammals. It plays important roles in maintaining rumen microecological homeostasis. Our previous study indicated that dietary niacin significantly elevated intramuscular fat content (IMF) in castrated finishing steers. Whether niacin affects fat deposition by regulating the microbial composition and functional capacities of gastrointestinal microbiome has been unknown yet. Methods: In this study, 16 castrated Xiangzhong Black cattle were randomly assigned into either control group fed with a basal concentrate diet (n = 8) or niacin group fed with a basal concentrate diet added 1000 mg/kg niacin (n = 8). Seven rumen samples and five cecum content samples were randomly collected from each of control and niacin groups for metagenomic sequencing analysis. Results: A total of 2,981,786 non-redundant microbial genes were obtained from all tested samples. Based on this, the phylogenetic compositions of the rumen and cecum microbiome were characterized. We found that bacteria dominated the rumen and cecum microbiome. Prevotella ruminicola and Ruminococcus flavefaciens were the most abundant bacterial species in the rumen microbiome, while Clostridiales bacterium and Eubacterium rectale were predominant bacterial species in the cecum microbiome. Rumen microbiome had significantly higher abundances of GHs, GTs, and PLs, while cecum microbiome was enriched by CBMs and AAs. We found a significant effect of dietary niacin on rumen microbiome, but not on cecum microbiome. Dietary niacin up-regulated the abundances of bacterial species producing lactic acid and butyrate, fermenting lactic acid, and participating in lipid hydrolysis, and degradation and assimilation of nitrogen-containing compounds, but down-regulated the abundances of several pathogens and bacterial species involved in the metabolism of proteins and peptides, and methane emissions. From the correlation analysis, we suggested that niacin improved nutrient digestion and absorption, but reduced energy loss, and Valine, leucine and isoleucine degradation of rumen microbiome, which resulted in the increased host IMF. Conclusion: The results suggested that dietary manipulation, such as the supplementation of niacin, should be regarded as the effective and convenient way to improve IMF of castrated finishing steers by regulating rumen microbiome.

2.
Anim Biosci ; 37(2): 240-252, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37905319

RESUMEN

OBJECTIVE: The aim of this study was to investigate the impact of dietary nicotinic acid (NA) on apparent nutrient digestibility, rumen fermentation, and rumen microbiota in uncastrated Xiangzhong black cattle. METHODS: Twenty-one uncastrated Xiangzhong black cattle (385.08±15.20 kg) aged 1.5 years were randomly assigned to the control group (CL, 0 mg/kg NA in concentrate diet), NA1 group (800 mg/kg NA in concentrate diet) and NA2 group (1,200 mg/kg NA in concentrate diet). All animals were fed a 60% concentrate diet and 40% dried rice straw for a 120-day feeding experiment. RESULTS: Supplemental NA not only enhanced the apparent nutrient digestibility of acid detergent fiber (p<0.01), but also elevated the rumen acetate and total volatile fatty acid concentrations (p<0.05). 16S rRNA gene sequencing analysis of rumen microbiota revealed that dietary NA changed the diversity of rumen microbiota (p<0.05) and the abundance of bacterial taxa in the rumen. The relative abundances of eight Erysipelotrichales taxa, five Ruminococcaceae taxa, and five Sphaerochaetales taxa were decreased by dietary NA (p< 0.05). However, the relative abundances of two taxa belonging to Roseburia faecis were increased by supplemental 800 mg/kg NA, and the abundances of seven Prevotella taxa, three Paraprevotellaceae taxa, three Bifidobacteriaceae taxa, and two operational taxonomic units annotated to Fibrobacter succinogenes were increased by 1,200 mg/kg NA in diets. Furthermore, the correlation analysis found significant correlations between the concentrations of volatile fatty acids in the rumen and the abundances of bacterial taxa, especially Prevotella. CONCLUSION: The results from this study suggest that dietary NA plays an important role in regulating apparent digestibility of acid detergent fiber, acetate, total volatile fatty acid concentrations, and the composition of rumen microbiota.

3.
Exp Biol Med (Maywood) ; 241(11): 1195-201, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27048556

RESUMEN

Nicotinic acid (NA) acting as the precursor of NAD(+)/NADH and NADP(+)/NADPH, participates in many biochemical processes, e.g. lipid metabolism. The main purpose of this study was to investigate the effects of dietary NA on carcass traits, meat quality, blood metabolites, and fat deposition in Chinese crossbred finishing steers. Sixteen steers with the similar body weight and at the age of 24 months were randomly allocated into control group (feeding basal diet) and NA group (feeding basal diet + 1000 mg/kg NA). All experimental cattle were fed a 90% concentrate diet and 10% forage straw in a 120-day feeding experiment. The results showed that supplemental NA in diet increased longissimus area, intramuscular fat content (17.14% vs. 9.03%), marbling score (8.08 vs. 4.30), redness (a*), and chroma (C*) values of LD muscle, but reduced carcass fat content (not including imtramuscular fat), pH24 h and moisture content of LD muscle, along with no effect on backfat thickness. Besides, NA supplementation increased serum HDL-C concentration, but decreased the serum levels of LDL-C, triglyceride, non-esterified fatty acid, total cholesterol, and glycated serum protein. In addition, NA supplementation increased G6PDH and ICDH activities of LD muscle. These results suggested that NA supplementation in diet improves the carcass characteristics and beef quality, and regulates the compositions of serum metabolites. Based on the above results, NA should be used as the feed additive in cattle industry.


Asunto(s)
Dieta/métodos , Grasas/metabolismo , Hipolipemiantes/administración & dosificación , Metabolismo de los Lípidos , Carne/análisis , Niacina/administración & dosificación , Animales , Bovinos , Suplementos Dietéticos , Carne Roja
4.
Exp Biol Med (Maywood) ; 240(9): 1152-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25526906

RESUMEN

An experiment was conducted to determine the effects of soy isoflavone daidzein on carcass characteristics, fat deposition, meat quality, and blood metabolites in finishing steers. Fourteen crossbred steers were used in a 120-d finishing study. These steers were stratified by weight into groups and randomly allotted by group to one of two dietary treatments: (1) control and (2) daidzein (500 mg/kg concentrate). The steers were fed a 90% concentrate diet. Supplemental daidzein did not affect slaughter weight, hot carcass weight, and dressing percentage, but tended to reduce fat proportion (not including intramuscular fat) in carcass and backfat thickness of steers. The carcass bone proportion was greater in steers fed daidzein diets than those fed control diets. Daidzein supplementation reduced pH at 24 h after slaughtered and moisture content and increased isocitrate dehydrogenase activity, fat content (16.28% and 7.94%), marbling score (5.29 and 3.36), redness (a*), and chroma (C*) values in longissimus muscle relative to control treatment. The concentrations of blood metabolites including glucose, blood urea nitrogen, triglyceride, total cholesterol, non-esterified fatty acid, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were all lower in steers fed daidzein diets than those fed control diets. Current results suggest that supplemental daidzein can affect lipid metabolism, increase intramuscular fat content and marbling score, and improve meat quality in finishing steers. Daidzein should be a promising feed additive for production of high-quality beef meat.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/crecimiento & desarrollo , Bovinos/crecimiento & desarrollo , Bovinos/metabolismo , Suplementos Dietéticos , Calidad de los Alimentos , Isoflavonas/administración & dosificación , Carne , Tejido Adiposo/metabolismo , Alimentación Animal , Animales , Isocitrato Deshidrogenasa/metabolismo , Lípidos/sangre , Lipogénesis/efectos de los fármacos , Masculino , Carne/análisis , Carne/normas , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...