RESUMEN
With the development of industry and modern manufacturing, nondegradable low-density polyethylene (LDPE) has been widely used, posing a rising environmental hazard to natural ecosystems and public health. In this study, we isolated a series of LDPE-degrading fungi from landfill sites and carried out LDPE degradation experiments by combining highly efficient degrading fungi in pairs. The results showed that the mixed microorganisms composed of Alternaria sp. CPEF-1 and Trametes sp. PE2F-4 (H-3 group) had a greater degradation effect on heat-treated LDPE (T-LDPE). After 30 days of inoculation with combination strain H-3, the weight loss rate of the T-LDPE film was approximately 154% higher than that of the untreated LDPE (U-LDPE) film, and the weight loss rate reached 0.66 ± 0.06%. Environmental scanning electron microscopy (ESEM) and Fourier transform infrared spectroscopy (FTIR) were used to further investigate the biodegradation impacts of T-LDPE, including the changes on the surface and depolymerization of the LDPE films during the fungal degradation process. Our findings revealed that the combined fungal treatment is more effective at degrading T-LDPE than the single strain treatment, and it is expected that properly altering the composition of the microbial community can help lessen the detrimental impact of plastics on the environment.
Asunto(s)
Alternaria , Biodegradación Ambiental , Polietileno , Trametes , Alternaria/metabolismo , Polietileno/metabolismo , Trametes/metabolismo , Instalaciones de Eliminación de Residuos , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Filogenia , Microbiología del SueloRESUMEN
Lignocellulose biomass raw materials have a high value in energy conversion. Recently, there has been growing interest in using microorganisms to secret a series of enzymes for converting low-cost biomass into high-value products such as biofuels. We previously isolated a strain of Penicillium oxalicun 5-18 with promising lignocellulose-degrading capability. However, the mechanisms of lignocellulosic degradation of this fungus on various substrates are still unclear. In this study, we performed transcriptome-wide profiling and comparative analysis of strain 5-18 cultivated in liquid media with glucose (Glu), xylan (Xyl) or wheat bran (WB) as sole carbon source. In comparison to Glu culture, the number of differentially expressed genes (DEGs) induced by WB and Xyl was 4134 and 1484, respectively, with 1176 and 868 genes upregulated. Identified DEGs were enriched in many of the same pathways in both comparison groups (WB vs. Glu and Xly vs. Glu). Specially, 118 and 82 CAZyme coding genes were highly upregulated in WB and Xyl cultures, respectively. Some specific pathways including (Hemi)cellulose metabolic processes were enriched in both comparison groups. The high upregulation of these genes also confirmed the ability of strain 5-18 to degrade lignocellulose. Co-expression and co-upregulated of genes encoding CE and AA CAZy families, as well as other (hemi)cellulase revealed a complex degradation strategy in this strain. Our findings provide new insights into critical genes, key pathways and enzyme arsenal involved in the biomass degradation of P. oxalicum 5-18.
Asunto(s)
Perfilación de la Expresión Génica , Lignina , Penicillium , Transcriptoma , Xilanos , Penicillium/genética , Penicillium/metabolismo , Lignina/metabolismo , Xilanos/metabolismo , Biomasa , Glucosa/metabolismo , Fibras de la Dieta/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMEN
Potassium-solubilizing microorganisms are capable of secreting acidic chemicals that dissolve and release potassium from soil minerals, thus facilitating potassium uptake by plants. In this study, three potassium-dissolving filamentous fungi were isolated from the rhizosphere soil of a poplar plantation in Jiangsu Province, China. Phylogenetic analyses based on ITS, 18 S, and 28 S showed that these three isolates were most similar to Mortierella. These strains also possessed spherical or ellipsoidal spores, produced sporangia at the hyphal tip, and formed petal-like colonies on PDA media resembling those of Mortierella species. These findings, along with further phenotypic observations, suggest that these isolates were Mortierella species. In addition, the potassium-dissolution experiment showed that strain 2K4 had a relatively high potassium-solubilizing capacity among these isolated fungi. By investigating the influences of different nutrient conditions (carbon source, nitrogen source, and inorganic salt) and initial pH values on the potassium-dissolving ability, the optimal potassium-solubilization conditions of the isolate were determined. When potassium feldspar powder was used as an insoluble potassium source, isolate 2K4 exhibited a significantly better polysaccharide aggregation ability on the formed mycelium-potassium feldspar complex. The composition and content of organic acids secreted by strain 2K4 were further detected, and the potassium-dissolution mechanism of the Mortierella species and its growth promotion effect were discussed, using maize as an example.
Asunto(s)
Silicatos de Aluminio , Mortierella , Compuestos de Potasio , Suelo , Suelo/química , Fosfatos , Mortierella/genética , Potasio , Rizosfera , Filogenia , Microbiología del Suelo , HongosRESUMEN
Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.
RESUMEN
BACKGROUND: A growing number of studies have examined the relation between solid fuels use and cognitive function in the mid-elderly, but results are inconsistent. Therefore, a systematic review and meta-analysis was carried out to evaluate their relevance and the efficacy of switching to cleaner fuels or using ventilation. METHOD: We used PubMed, Web of Science, and Cochrane Library databases to identify 17 studies in which the primary outcome variable was cognitive function decline or cognitive disorders, and the exposure measure was solid fuels use. The final search date of August 31, 2023. The effect size of odds ratio (OR), regression coefficient (ß), and 95% confidence interval (CI) were pooled. Heterogeneity and the possibility of publication bias were assessed by using the Q-statistic and Begg's test, respectively. RESULT: Among the 17 included papers, the study participants were ≥45 years old. Eleven studies assessed the relationship between solid fuels use and cognitive function decline [number of studies (n) = 11, ß = -0.144; I2 = 97.7%]. Five studies assessed the relationship between solid fuels use and cognitive disorders (n = 5, OR = 1.229; I2 = 41.1%). Switching from using solid fuels to clean fuels could reduce the risk of cognitive function decline as compared to those who remained on using solid fuels (n = 2; ß = 0.710; I2 = 82.4%). Among participants using solid fuels, who cooked without on ventilated stoves were correlated with an enhanced risk of cognitive disorders as compared to participants who cooked with ventilated stoves (n = 2; OR = 1.358; I2 = 44.7%). CONCLUSION: Our meta-analysis showed a negative relationship between solid fuels use with cognitive function, and a positive relationship with cognitive disorders. Cleaner fuels, using ventilation, improved cookstoves can reduce the adverse health hazards of solid fuels use.
Asunto(s)
Contaminación del Aire Interior , Cognición , Ventilación , Humanos , Contaminación del Aire Interior/efectos adversos , Culinaria , Disfunción Cognitiva/etiología , Disfunción Cognitiva/epidemiologíaRESUMEN
Carbon catabolite repression (CCR) is a global regulatory mechanism that allows organisms to preferentially utilize a preferred carbon source (usually glucose) by suppressing the expression of genes associated with the utilization of nonpreferred carbon sources. Aspergillus is a large genus of filamentous fungi, some species of which have been used as microbial cell factories for the production of organic acids, industrial enzymes, pharmaceuticals, and other fermented products due to their safety, substrate convenience, and well-established post-translational modifications. Many recent studies have verified that CCR-related genetic alterations can boost the yield of various carbohydrate-active enzymes (CAZymes), even under CCR conditions. Based on these findings, we emphasize that appropriate regulation of the CCR pathway, especially the expression of the key transcription factor CreA gene, has great potential for further expanding the application of Aspergillus cell factories to develop strains for industrial CAZymes production. Further, the genetically modified CCR strains (chassis hosts) can also be used for the production of other useful natural products and recombinant proteins, among others. We here review the regulatory mechanisms of CCR in Aspergillus and its direct application in enzyme production, as well as its potential application in organic acid and pharmaceutical production to illustrate the effects of CCR on Aspergillus cell factories.
Asunto(s)
Represión Catabólica , Represión Catabólica/genética , Hongos/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Glucosa/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/metabolismoRESUMEN
Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management. Recently, electrocatalytically converting polyethylene terephthalate (PET) into formate and hydrogen has aroused great interest, while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol (PET monomer) oxidation reaction (EGOR) remains a challenge. Herein, a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy. Benefiting from the interconnected ultrathin nanosheet architecture, dual dopants induced up-shifting d band centre and facilitated in situ structural reconstruction, the Co and Cl co-doped Ni3S2 (Co, Cl-NiS) outperforms the single-doped and undoped analogues for EGOR. The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency (> 92%) and selectivity (> 91%) at high current densities (> 400 mA cm-2). Besides producing formate, the bifunctional Co, Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h-1 in 2 M KOH, at 1.7 V. This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes, but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production.
RESUMEN
Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.
Asunto(s)
Trabajo de Parto , Polihidroxialcanoatos , Humanos , Embarazo , Femenino , Animales , Ingeniería , Animales Salvajes , Reacciones CruzadasRESUMEN
Studies on the degradation of plant cell wall polysaccharides by fungal extracellular enzymes have attracted recent attention from researchers. Xylan, abundant in hemicellulose, that play great role in connection between cellulose and lignin, has seen interest in its hydrolytic enzymatic complex. In this study, dozens of fungus species spanning genera were isolated from rotting leaves based on their ability to decompose xylan. Among these isolates, a strain with strong xylanase-producing ability was selected for further investigation by genome sequencing. Based on phylogenetic analysis of ITS (rDNA internal transcribed spacer) and LSU (Large subunit 28S rDNA) regions, the isolate was identified as Penicillium oxalicum. Morphological analysis also supported this finding. Xylanase activity of this isolated P. oxalicum 5-18 strain was recorded to be 30.83 U/mL using the 3,5-dinitro-salicylic acid (DNS) method. Further genome sequencing reveals that sequenced reads were assembled into a 30.78 Mb genome containing 10,074 predicted protein-encoding genes. In total, 439 carbohydrate-active enzymes (CAZymes) encoding genes were predicted, many of which were associated with cellulose, hemicellulose, pectin, chitin and starch degradation. Further analysis and comparison showed that the isolate P. oxalicum 5-18 contains a diverse set of CAZyme genes involved in degradation of plant cell wall components, particularly cellulose and hemicellulose. These findings provide us with valuable genetic information about the plant biomass-degrading enzyme system of P. oxalicum, facilitating a further exploration of the repertoire of industrially relevant lignocellulolytic enzymes of P. oxalicum 5-18.
Asunto(s)
Lignina , Xilanos , Filogenia , Celulosa , ADN RibosómicoRESUMEN
Phosphorus is one of the main nutrients necessary for plant growth and development. Phosphorus-dissolving microorganisms may convert insoluble phosphorus in soil into available phosphorus that plants can easily absorb and utilize. In this study, four phosphorus-solubilizing fungi (L3, L4, L5, and L12) were isolated from the rhizosphere soil of a poplar plantation in Dongtai, Jiangsu Province, China. Phylogenetic analysis based on the internal transcribed spacer (ITS) and large subunit (LSU) of the ribosomal DNA sequences showed that the ITS and 28S sequences of isolates were the most similar to those of Mortierella. Morphological observation showed that most colonies grew in concentric circles and produced spores under different culture conditions. These results and further microscopic observations showed that these isolated fungi belonged to the genus Mortierella. Pikovskaya (PKO) medium, in which tricalcium phosphate was the sole phosphorus source, was used to screen strain L4 with the best phosphorus-solubilizing effect for further study. When the carbon source was glucose, the nitrogen source was ammonium chloride, the pH was 5, and the available phosphorus content was the highest. By exploring the possible mechanism of phosphorus release by phosphorus-solubilizing fungi, it was found that strain L4 produces several organic acids, such as oxalic acid, lactic acid, acetic acid, succinic acid, tartaric acid, malic acid, and citric acid. At 24 h, the alkaline phosphatase and acid phosphatase activities reached 154.72 mol/(L·h) and 120.99 mol/(L·h), respectively.
RESUMEN
The majority of terrestrial plants are symbiotic with arbuscular mycorrhizal fungi (AMF). Plants supply carbohydrates to microbes, whereas AMF provide plants with water and other necessary nutrients-most typically, phosphorus. Understanding the response of the AMF community structure to biogas slurry (BS) fertilization is of great significance for sustainable forest management. This study aimed to look into the effects of BS fertilization at different concentrations on AMF community structures in rhizospheric soil in poplar plantations. We found that different fertilization concentrations dramatically affected the diversity of AMF in the rhizospheric soil of the poplar plantations, and the treatment with a high BS concentration showed the highest Shannon diversity of AMF and OTU richness (Chao1). Further analyses revealed that Glomerales, as the predominant order, accounted for 36.2-42.7% of the AMF communities, and the relative abundance of Glomerales exhibited negligible changes with different BS fertilization concentrations, whereas the order Paraglomerales increased significantly in both the low- and high-concentration treatments in comparison with the control. Furthermore, the addition of BS drastically enhanced the relative abundance of the dominant genera, Glomus and Paraglomus. The application of BS could also distinguish the AMF community composition in the rhizospheric soil well. An RDA analysis indicated that the dominant genus Glomus was significantly positively correlated with nitrate reductase activity, while Paraglomus showed a significant positive correlation with available P. Overall, the findings suggest that adding BS fertilizer to poplar plantations can elevate the diversity of AMF communities in rhizospheric soil and the relative abundance of some critical genera that affect plant nutrient uptake.
RESUMEN
BACKGROUND: Acetoin (AC) is a vital platform chemical widely used in food, pharmaceutical and chemical industries. With increasing concern over non-renewable resources and environmental issues, using low-cost biomass for acetoin production by microbial fermentation is undoubtedly a promising strategy. RESULTS: This work reduces the disadvantages of Bacillus subtilis during fermentation by regulating genes involved in spore formation and autolysis. Then, optimizing intracellular redox homeostasis through Rex protein mitigated the detrimental effects of NADH produced by the glycolytic metabolic pathway on the process of AC production. Subsequently, multiple pathways that compete with AC production are blocked to optimize carbon flux allocation. Finally, the population cell density-induced promoter was used to enhance the AC synthesis pathway. Fermentation was carried out in a 5-L bioreactor using bagasse lignocellulosic hydrolysate, resulting in a final titer of 64.3 g/L, which was 89.5% of the theoretical yield. CONCLUSIONS: The recombinant strain BSMAY-4-PsrfA provides an economical and efficient strategy for large-scale industrial production of acetoin.
RESUMEN
Aspergillus, a genus of filamentous fungi, is extensively distributed in nature and plays crucial roles in the decomposition of organic materials as an important environmental microorganism as well as in the traditional fermentation and food processing industries. Furthermore, due to their strong potential to secrete a large variety of hydrolytic enzymes and other natural products by manipulating gene expression and/or introducing new biosynthetic pathways, several Aspergillus species have been widely exploited as microbial cell factories. In recent years, with the development of next-generation genome sequencing technology and genetic engineering methods, the production and utilization of various homo-/heterologous-proteins and natural products in Aspergillus species have been well studied. As a newly developed genome editing technology, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been used to edit and modify genes in Aspergilli. So far, the CRISPR/Cas9-based approach has been widely employed to improve the efficiency of gene modification in the strain type Aspergillus nidulans and other industrially important and pathogenic Aspergillus species, including Aspergillus oryzae, Aspergillus niger, and Aspergillus fumigatus. This review highlights the current development of CRISPR/Cas9-based genome editing technology and its application in basic research and the production of recombination proteins and natural products in the Aspergillus species.
RESUMEN
BiOX (X = Cl, Br and I) and BiOX/TiO2 photocatalysts were prepared by a facile hydrothermal approach. The BiOX/TiO2 heterojunctions demonstrated significantly enhanced efficiency for photocatalytic decomposition of perfluorooctanoic acid (PFOA) compared with sole BiOX or TiO2. PFOA (10 mg L1) was completely degraded by BiOCl(Br)/TiO2 in 8 h. Moreover, BiOCl/TiO2 attained deep decomposition of PFOA with a high defluorination ratio of 82%. The p-n heterojunctions between BiOX and TiO2 were confirmed by a series of characterizations. The photo-induced holes would migrate from the valance band (VB) of TiO2 to BiOX, driven by the built-in electric field (BIEF) near the interfaces of p-n heterojunctions, the inner electric fields (IEF) in BiOX and the higher VB position of BiOX. The X-ray diffraction (XRD) and TEM characterizations indicated that TiO2 combined with BiOX along the [110] facet, which facilitated photo-induced electron transfer in the [001] direction, thus benefiting PFOA decomposition.
RESUMEN
Plasma techniques to degrade pollutants are generally more efficient than conventional methods, but exist some problems such as high energy consumption, incomplete degradation of pollutants, and secondary pollution caused by highly toxic intermediates. In this study, the dielectric barrier discharge plasma (DBDP) combined with the Ti-based metal organic frameworks (MOFs) catalysts (P25/NH2-MIL-125(Ti)) was used to degrade fluorene in the soil. The synergistic treatment technique used in soil remediation can realize a green and promising treatment efficiency with relatively low energy consumption. Compared with DBDP system alone, the synergetic treatment system of DBDP and P25/NH2-MIL-125(Ti) considerably increased the degradation efficiency of fluorene in the soil to above 90% at 10 min, even with a relatively low discharge voltage (5 kV). The synergistic treatment system achieved 88.8% of fluorene mineralization at 60 min. Optical emission spectroscopy and electron paramagnetic resonance spectroscopy both showed that â¢OH and â¢O2- played an important role in the synergetic treatment system. Nine main intermediates were identified using gas chromatography-mass spectrometry and Fourier transform infrared analysis. The main degradation of fluorine in soil was caused by the electronic transition of the catalytic material excited by DBDP, and finally mineralized into CO2 and H2O. The fluorene and its toxic intermediates were effectively removed. This study provides an insight for achieving high efficiency and environmentally friendly application perspective in soil remediation.
Asunto(s)
Contaminantes Ambientales , Suelo , Fluorenos , Titanio/químicaRESUMEN
BACKGROUND: Clostridium carboxidivorans P7 is capable of producing ethanol and butanol from inexpensive and non-food feedstock, such as syngas. Achieving improved ethanol and butanol production in the strain for industrial application depends on the energetics and biomass, especially ATP availability. RESULTS: This study found that exogenous addition of citrulline promoted accumulation of ATP, increased specific growth rate, and reduced the doubling time of C. carboxidivorans P7. In heterotrophic fermentation experiments, the addition of citrulline increased intracellular ATP by 3.39-fold, significantly enhancing the production of total alcohol (ethanol + butanol) by 20%. Moreover, in the syngas fermentation experiments, the addition of citrulline improved the level of intracellular ATP and the biomass by 80.5% and 31.6%, respectively, resulting in an 18.6% and 60.3% increase in ethanol and the alcohol/acid production ratio, respectively. CONCLUSIONS: This is the first report that citrulline could promote the growth of C. carboxidivorans P7 and increase the level of intracellular ATP, which is of great significance for the use of C. carboxidivorans P7 to synthesize biofuels.
RESUMEN
Transcription factors (TFs) perform a crucial function in the regulation of amino acids biosynthesis. Here, TFs involved in L-glutamate biosynthesis in Corynebacterium glutamicum were investigated. Compared to transcriptomic results of C. glutamicum 13032, 7 TFs regulated to glutamate biosynthesis were indentifed in G01 and E01. Among them, RosR was demonstrated to regulate L-glutamate metabolic network by binding to the promoters of glnA, pqo, ilvB, ilvN, ilvC, ldhA, odhA, dstr1, fas, argJ, ak and pta. Overexpression of RosR in G01 resulted in significantly decreased by-products yield and improved L-glutamate titer (130.6 g/L) and yield (0.541 g/g from glucose) in fed-batch fermentation. This study demonstrated the L-glutamate production improved by the expression of TFs in C. glutamicum, which provided a good reference for the transcriptional regulation engineering of strains for amino acid biosynthesis and suggested further metabolic engineering of C. glutamicum for L-glutamate production.
Asunto(s)
Corynebacterium glutamicum , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Fermentación , Ácido Glutámico/metabolismo , Ingeniería Metabólica , Factores de Transcripción/genéticaRESUMEN
Cellulosic n-butanol from renewable lignocellulosic biomass has gained increased interest. Previously, we have engineered Clostridium cellulovorans, a cellulolytic acidogen, to overexpress the bifunctional butyraldehyde/butanol dehydrogenase gene adhE2 from C. acetobutylicum for n-butanol production from crystalline cellulose. However, butanol production by this engineered strain had a relatively low yield of approximately 0.22 g/g cellulose due to the coproduction of ethanol and acids. We hypothesized that strengthening the carbon flux through the central butyryl-CoA biosynthesis pathway and increasing intracellular NADH availability in C. cellulovorans adhE2 would enhance n-butanol production. In this study, thiolase (thlACA ) from C. acetobutylicum and 3-hydroxybutyryl-CoA dehydrogenase (hbdCT ) from C. tyrobutyricum were overexpressed in C. cellulovorans adhE2 to increase the flux from acetyl-CoA to butyryl-CoA. In addition, ferredoxin-NAD(P)+ oxidoreductase (fnr), which can regenerate the intracellular NAD(P)H and thus increase butanol biosynthesis, was also overexpressed. Metabolic flux analyses showed that mutants overexpressing these genes had a significantly increased carbon flux toward butyryl-CoA, which resulted in increased production of butyrate and butanol. The addition of methyl viologen as an electron carrier in batch fermentation further directed more carbon flux towards n-butanol biosynthesis due to increased reducing equivalent or NADH. The engineered strain C. cellulovorans adhE2-fnrCA -thlACA -hbdCT produced n-butanol from cellulose at a 50% higher yield (0.34 g/g), the highest ever obtained in batch fermentation by any known bacterial strain. The engineered C. cellulovorans is thus a promising host for n-butanol production from cellulosic biomass in consolidated bioprocessing.
Asunto(s)
1-Butanol/metabolismo , Celulosa/metabolismo , Clostridium cellulovorans , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Clostridium cellulovorans/genética , Clostridium cellulovorans/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismoRESUMEN
The filamentous fungus Aspergillus oryzae is an important strain in the traditional fermentation and food processing industries and is often used in the production of soy sauce, soybean paste, and liquor-making. In addition, A. oryzae has a strong capacity to secrete large amounts of hydrolytic enzymes; therefore, it has also been used in the enzyme industry as a cell factory for the production of numerous native and heterologous enzymes. However, the production and secretion of foreign proteins by A. oryzae are often limited by numerous bottlenecks that occur during transcription, translation, protein folding, translocation, degradation, transport, secretion, etc. The existence of these problems makes it difficult to achieve the desired target in the production of foreign proteins by A. oryzae. In recent years, with the decipherment of the whole genome sequence, basic research and genetic engineering technologies related to the production and utilization of A. oryzae have been well developed, such as the improvement of homologous recombination efficiency, application of selectable marker genes, development of large chromosome deletion technology, utilization of hyphal fusion techniques, and application of CRISPR/Cas9 genome editing systems. The development and establishment of these genetic engineering technologies provided a great deal of technical support for the industrial production and application of A. oryzae. This paper reviews the advances in basic research and genetic engineering technologies of the fermentation strain A. oryzae mentioned above to open up more effective ways and research space for the breeding of A. oryzae production strains in the future.
RESUMEN
The entering of the widespread polyethylene terephthalate (PET) microplastics into biological wastewater treatment system results in their retention in sewage sludge, which inevitably enters the sludge treatment system. However, all previous studies regarding the impact of microplastics on sludge treatment system were conducted by directly adding microplastics to system and focusing on anaerobic sludge digestion, although PET microplastics commonly enter into the biological wastewater treatment system first before sludge being subsequently treated. The potential impact of the microplastics on waste activated sludge (WAS) aerobic digestion is also completely missing. Therefore, herein the influences of PET microplastics with different entry paths on WAS aerobic digestion as well as the key mechanisms involved was firstly explored. Experimental results demonstrated that compared to the control test, the entering of PET microplastics to biological wastewater treatment system inhibited WAS aerobic digestion by 10.9 ± 0.1% through the decreased hydrolysis, although WAS solubilization during aerobic digestion was improved due to the change of generated WAS characteristics. In contrast, when PET microplastics was directly added to the sludge aerobic digester, there was little impact on solubilization, while the hydrolysis were inhibited seriously, thereby suppressing WAS aerobic digestion more severely by 28.9 ± 0.1%. Further investigation revealed that PET microplastics reduced the populations of key bacteria (e.g., Saprospiraceae, Chitinophagaceae and Xanthomonadaceae) involved in aerobic digestion via induced oxidative stress or/and releasing toxic chemical. This study provided a more accurate approach to assessing the real situation regarding the influences of PET microplastics on aerobic sludge digestion.