Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
World J Gastrointest Surg ; 16(2): 616-621, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38463358

RESUMEN

BACKGROUND: The overlap of imaging manifestations among distinct splenic lesions gives rise to a diagnostic dilemma. Consequently, a definitive diagnosis primarily relies on histological results. The ultrasound (US)-guided coaxial core needle biopsy (CNB) not only procures sufficient tissue to help clarify the diagnosis, but reduces the incidence of puncture-related complications. CASE SUMMARY: A 41-year-old female, with a history of pulmonary tuberculosis, was admitted to our hospital with multiple indeterminate splenic lesions. Gray-scale ultrasonography demonstrated splenomegaly with numerous well-defined hypoechoic masses. Abdominal contrast-enhanced computed tomography (CT) showed an enlarged spleen with multiple irregular-shaped, peripherally enhancing, hypodense lesions. Positron emission CT revealed numerous abnormal hyperglycemia foci. These imaging findings strongly indicated the possibility of infectious disease as the primary concern, with neoplastic lesions requiring exclusion. To obtain the precise pathological diagnosis, the US-guided coaxial CNB of the spleen was carried out. The patient did not express any discomfort during the procedure. CONCLUSION: Percutaneous US-guided coaxial CNB is an excellent and safe option for obtaining precise splenic tissue samples, as it significantly enhances sample yield for exact pathological analysis with minimum trauma to the spleen parenchyma and surrounding tissue.

2.
Insights Imaging ; 15(1): 44, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353807

RESUMEN

OBJECTIVES: To develop and compare noninvasive models for differentiating between combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and HCC based on serum tumor markers, contrast-enhanced ultrasound (CEUS), and computed tomography (CECT). METHODS: From January 2010 to December 2021, patients with pathologically confirmed cHCC-CCA or HCC who underwent both preoperative CEUS and CECT were retrospectively enrolled. Propensity scores were calculated to match cHCC-CCA and HCC patients with a near-neighbor ratio of 1:2. Two predicted models, a CEUS-predominant (CEUS features plus tumor markers) and a CECT-predominant model (CECT features plus tumor markers), were constructed using logistic regression analyses. Model performance was evaluated by the area under the curve (AUC), sensitivity, specificity, and accuracy. RESULTS: A total of 135 patients (mean age, 51.3 years ± 10.9; 122 men) with 135 tumors (45 cHCC-CCA and 90 HCC) were included. By logistic regression analysis, unclear boundary in the intratumoral nonenhanced area, partial washout on CEUS, CA 19-9 > 100 U/mL, lack of cirrhosis, incomplete tumor capsule, and nonrim arterial phase hyperenhancement (APHE) volume < 50% on CECT were independent factors for a diagnosis of cHCC-CCA. The CECT-predominant model showed almost perfect sensitivity for cHCC-CCA, unlike the CEUS-predominant model (93.3% vs. 55.6%, p < 0.001). The CEUS-predominant model showed higher diagnostic specificity than the CECT-predominant model (80.0% vs. 63.3%; p = 0.020), especially in the ≤ 5 cm subgroup (92.0% vs. 70.0%; p = 0.013). CONCLUSIONS: The CECT-predominant model provides higher diagnostic sensitivity than the CEUS-predominant model for CHCC-CCA. Combining CECT features with serum CA 19-9 > 100 U/mL shows excellent sensitivity. CRITICAL RELEVANCE STATEMENT: Combining lack of cirrhosis, incomplete tumor capsule, and nonrim arterial phase hyperenhancement (APHE) volume < 50% on CECT with serum CA 19-9 > 100 U/mL shows excellent sensitivity in differentiating cHCC-CCA from HCC. KEY POINTS: 1. Accurate differentiation between cHCC-CCA and HCC is essential for treatment decisions. 2. The CECT-predominant model provides higher accuracy than the CEUS-predominant model for CHCC-CCA. 3. Combining CECT features and CA 19-9 levels shows a sensitivity of 93.3% in diagnosing cHCC-CCA.

3.
World J Gastroenterol ; 29(17): 2534-2550, 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37213404

RESUMEN

In the world, nonalcoholic fatty liver disease (NAFLD) accounts for majority of diffuse hepatic diseases. Notably, substantial liver fat accumulation can trigger and accelerate hepatic fibrosis, thus contributing to disease progression. Moreover, the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases. Therefore, early detection and quantified measurement of hepatic fat content are of great importance. Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis. However, liver biopsy has several limitations, namely, its invasiveness, sampling error, high cost and moderate intraobserver and interobserver reproducibility. Recently, various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content, including ultrasound- or magnetic resonance-based methods. These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content, which is useful for longitudinal follow-up. In this review, we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Diabetes Mellitus Tipo 2/patología , Reproducibilidad de los Resultados , Hígado/diagnóstico por imagen , Hígado/patología , Imagen por Resonancia Magnética/métodos , Biopsia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA