Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 973828, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160217

RESUMEN

The intestinal flora has a variety of physiological functions involved in the regulation of host metabolism, immunity and endocrinology, and plays an important role in maintaining the health of the host. In this study, we used high-throughput sequencing technology to analyze the intestinal bacterial diversity and their gene functions in three equine species of the genus Shetland Pony (SP), Mongolian Wild Ass (MA), and Plain Zebra (PZ) in captivity in two wildlife parks in Inner Mongolia Autonomous Region, China. The results showed that only the SP intestinal bacterial abundance index (Chao1) was significantly different (P < 0.05) between the same species in the two wildlife parks, but neither the intestinal bacterial diversity index (Shannon) nor the community composition were significantly different (P > 0.05). The bacterial abundance index (Chao1) was significantly higher in MA than SP (P < 0.05) and highly significantly higher than PZ (P < 0.01); the bacterial diversity index (Shannon) was higher in MA than PZ, but there was no significant difference, but both MA and PZ were significantly higher than SP (P < 0.05). Moreover, the intestinal bacterial community composition was significantly different among the three equine species (P = 0.001). The dominant bacterial phyla for SP, MA, and PZ were Firmicutes and Bacteroidota; among them, the bacterial family with the highest relative abundance was Lachnospiraceae and the bacterial genus was Rikenellaceae_RC9_gut_group. Analysis of the metabolic gene functions of intestinal bacteria revealed that the highest relative abundance at Pathway level 2 was for global and overview maps; at Pathway level 3, the highest relative abundance was for biosynthesis of secondary metabolites. In sum, the intestinal bacterial community composition and diversity of the above three equine species differed significantly, but their metabolic gene functions were similar. Moreover, the results of this manuscript fill the gap in the study of intestinal bacterial diversity in SP, MA, and PZ. It also provides a reference for the study of the dominant bacteria in the intestinal microorganisms of these three equine species and the discovery of novel functional genes.

2.
Front Nutr ; 9: 921875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757257

RESUMEN

Diarrhea is one of the common adverse reactions in antibiotic treatment, which is usually caused by the imbalance of intestinal flora, and probiotics play an important role in the structure of intestinal flora. Therefore, this experiment studied the regulatory effect of Lactiplantibacillus plantarum 2-33 on antibiotic-associated diarrhea (AAD) mice. First, the AAD mice model was established by the mixed antibiotic solution of gentamicin sulfate and cefradine. Then, the physiological indexes and diarrhea of mice were observed and recorded by gastric perfusion of low dose (1.0 × 107 CFU/ml), medium dose (1.0 × 108CFU/ml), and high dose (1.0 × 109 CFU/ml) strain 2-33. 16S rRNA gene V3-V4 regions were sequenced in colon contents of mice in control group, model group, self-healing group, and experimental group, respectively, and the diversity of intestinal flora and gene function prediction were analyzed. The results showed that the intestinal flora of AAD mice was not significantly regulated by gastric perfusion of strain 2-33 to 7 days, but the relative abundance and diversity of intestinal flora of AAD mice were significantly improved by gastric perfusion to 14 days (p < 0.05). In addition, at the genus level, the relative abundance of Lactobacillus increased significantly, and the relative abundance of Enterococcus and Bacillus decreased significantly (p < 0.05). In addition, the regulation of strain 2-33 on intestinal flora of AAD mice was time- and dose-dependent, short-term gastric perfusion, and low dose had no significant effect (p > 0.05). Strain 2-33 can significantly increase the levels of anti-inflammatory cytokines IL-4 and IL-10, significantly decrease the levels of proinflammatory cytokines TNF-α and IFN-γ (p < 0.05), and can also adjust carbohydrate metabolism, amino acid metabolism, and energy metabolism to normal levels, thus accelerating the recovery of intestinal flora structure of AAD mice. In summary, strain 2-33 can improve the structure and diversity of intestinal flora of AAD mice, balance the level of substance and energy metabolism, and play a positive role in relieving diarrhea, maintaining and improving the intestinal microecological balance.

3.
Front Nutr ; 9: 835123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399660

RESUMEN

With the continuous infiltration of industrialization and modern lifestyle into pastoral areas, the types and processing capacity of Hurunge are decreasing, and the beneficial microbial resources contained in it are gradually disappearing. The preservation and processing of Hurunge are very important for herdsmen to successfully produce high-quality koumiss in the second year. Therefore, in this study, 12 precious Hurunge samples collected from Bulgan Province, Ovorkhangay Province, Arkhangay Province, and Tov Province of Mongolia were sequenced based on the V3-V4 region of the 16S rRNA gene, and the bacterial diversity and function were predicted and analyzed. There were significant differences in the species and abundance of bacteria in Hurunge from different regions and different production methods (p < 0.05). Compared with the traditional fermentation methods, the OTU level of Hurunge fermented in the capsule was low, the Acetobacter content was high and the bacterial diversity was low. Firmicutes and Lactobacillus were the dominant phylum and genus of 12 samples, respectively. The sample QHA contained Komagataeibacter with the potential ability to produce bacterial nanocellulose, and the abundance of Lactococcus in the Tov Province (Z) was significantly higher than that in the other three regions. Functional prediction analysis showed that genes related to the metabolism of bacterial growth and reproduction, especially carbohydrate and amino acid metabolism, played a dominant role in microorganisms. In summary, it is of great significance to further explore the bacterial diversity of Hurunge for the future development and research of beneficial microbial resources, promotion, and protection of the traditional ethnic dairy products.

4.
Front Microbiol ; 12: 641025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664724

RESUMEN

As methicillin-resistant Staphylococcus aureus (MRSA) is becoming a serious pathogenic threaten to human health worldwide, there is an urgent need to discover new antibiotics for the treatment of MRSA infections. Alboflavusins (AFNs) are a group of halogenated cyclohexapeptides with anti-MRSA activities. In this study, two novel brominated AFN congeners (compounds 1 and 2) were isolated from the wild-type strain Streptomyces alboflavus sp. 313 that was fermented in the production medium supplemented with NaBr; two new (compounds 3 and 5) and a known (compound 4) dehelogenated AFN congeners were isolated from S. alboflavus ΔafnX, in which the tryptophan halogenase gene afnX was inactivated. The structures of these compounds were assigned by careful NMR and MS analyses. The anti-MRSA activities of varied AFN congeners were assessed against different MRSA strains, which revealed that compounds 1 and 2 with bromine displayed effective activities against the tested MRSA strains. Especially, compound 2 showed good anti-MRSA activity, while compounds 3, 4, and 5 without halogen exhibited weak anti-MRSA activities, outlining the influence of halogen substitution to the bioactivities of AFNs.

5.
Asian-Australas J Anim Sci ; 29(9): 1345-52, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26954132

RESUMEN

The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (p<0.05) between the two breeds. At the genus level, Treponema was the most abundant genus (43% in Mongolian horses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (p<0.05) between the two breeds. We found that the environment was one of very important factors that influenced horse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in horses.

7.
Sci Rep ; 5: 14106, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26373886

RESUMEN

The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, cytokinesis, and the establishment of the G1 cell cycle phase were identified by analysis of miRNA targets and rapidly evolving genes.


Asunto(s)
Equidae/genética , Evolución Molecular , Genoma , Impresión Genómica , Cariotipo , Animales , Centrómero/genética , Biología Computacional/métodos , Reordenamiento Génico , Genómica/métodos , MicroARNs/genética , Anotación de Secuencia Molecular , Interferencia de ARN , ARN Mensajero/genética , Secuencias Repetitivas de Ácidos Nucleicos
8.
Sci Rep ; 4: 4958, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24828444

RESUMEN

Karyotypic diversification is more prominent in Equus species than in other mammals. Here, using next generation sequencing technology, we generated and de novo assembled quality genomes sequences for a male wild horse (Przewalski's horse) and a male domestic horse (Mongolian horse), with about 93-fold and 91-fold coverage, respectively. Portion of Y chromosome from wild horse assemblies (3 M bp) and Mongolian horse (2 M bp) were also sequenced and de novo assembled. We confirmed a Robertsonian translocation event through the wild horse's chromosomes 23 and 24, which contained sequences that were highly homologous with those on the domestic horse's chromosome 5. The four main types of rearrangement, insertion of unknown origin, inserted duplication, inversion, and relocation, are not evenly distributed on all the chromosomes, and some chromosomes, such as the X chromosome, contain more rearrangements than others, and the number of inversions is far less than the number of insertions and relocations in the horse genome. Furthermore, we discovered the percentages of LINE_L1 and LTR_ERV1 are significantly increased in rearrangement regions. The analysis results of the two representative Equus species genomes improved our knowledge of Equus chromosome rearrangement and karyotype evolution.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Genoma , Genómica , Cariotipo , Animales , Biología Computacional , Femenino , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , Masculino , Datos de Secuencia Molecular , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Cromosoma Y
9.
J Ind Microbiol Biotechnol ; 37(9): 919-25, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20490605

RESUMEN

A Proteus vulgaris strain named T6 which produced lipase (PVL) with nonpositional specificity had been isolated in our laboratory. To produce the lipase in large quantities, we cloned its gene, which had an opening reading frame of 864 base pairs and encoded a deduced 287-amino-acid protein. The PVL gene was inserted into the Escherichia coli expression vector pET-DsbA, and active lipase was expressed in E. coli BL21 cells. The secretive expression of PVL gene in Bacillus subtilis was examined. Three vectors, i.e., pMM1525 (xylose-inducible), pMMP43 (constitutive vector, derivative of pMM1525), and pHPQ (sucrose-inducible, constructed based on pHB201), were used to produce lipase in B. subtilis. Recombinant B. subtilis WB800 cells harboring the pHPQ-PVL plasmid could synthesize and secrete the PVL protein in high yield. The lipase activity reached 356.8 U/mL after induction with sucrose for 72 h in shake-flask culture, representing a 12-fold increase over the native lipase activity in P. vulgaris. The characteristics of the heterologously expressed lipase were identical to those of the native one.


Asunto(s)
Bacillus subtilis/metabolismo , Microbiología Industrial/métodos , Lipasa/biosíntesis , Proteus vulgaris/enzimología , Proteínas Recombinantes/biosíntesis , Bacillus subtilis/genética , Clonación Molecular , Expresión Génica , Vectores Genéticos , Lipasa/química , Lipasa/genética , Plásmidos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...