Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 143: 109230, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977542

RESUMEN

Copper (Cu) and Cadmium (Cd), prevalent heavy metals in marine environments, have known implications in oxidative stress, immune response, and toxicity in marine organisms. Sepia esculenta, a cephalopod of significant economic value along China's eastern coastline, experiences alterations in growth, mobility, and reproduction when subjected to these heavy metals. However, the specific mechanisms resulting from heavy metal exposure in S. esculenta remain largely uncharted. In this study, we utilized transcriptome and four oxidative, immunity, and toxicity indicators to assess the toxicological mechanism in S. esculenta larvae exposed to Cu and Cd. The measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), Glutathione S-Transferase (GST), and Metallothioneins (MTs) revealed that Cu and Cd trigger substantial oxidative stress, immune response, and metal toxicity. Further, we performed an analysis on the transcriptome data through Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) network analysis. Our findings indicate that exposure methods and duration influence the type and the extent of toxicity and oxidative stress within the S. esculenta larvae. We took an innovative approach in this research by integrating WGCNA and PPI network analysis with four significant physiological indicators to closely examine the toxicity and oxidative stress profiles of S. esculenta upon exposure to Cu and Cd. This investigation is vital in decoding the toxicological, immunological, and oxidative stress mechanisms within S. esculenta when subjected to heavy metals. It provides foundational insights capable of advancing invertebrate environmental toxicology and informs S. esculenta artificial breeding practices.


Asunto(s)
Metales Pesados , Sepia , Animales , Cobre/toxicidad , Cadmio/toxicidad , Sepia/metabolismo , Antioxidantes/metabolismo , Redes Reguladoras de Genes , Larva/genética , Larva/metabolismo , Estrés Oxidativo , Metales Pesados/toxicidad , Inmunidad
2.
Metabolites ; 13(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37623871

RESUMEN

As the quality of life improves, there is an increasing demand for nutrition-rich marine organisms like fish, shellfish, and cephalopods. To address this, artificial cultivation of these organisms is being explored along with ongoing research on their growth and development. A case in point is Amphioctopus fangsiao, a highly valued cephalopod known for its tasty meat, nutrient richness, and rapid growth rate. Despite its significance, there is a dearth of studies on the A. fangsiao growth mechanism, particularly of its larvae. In this study, we collected A. fangsiao larvae at 0, 4, 12, and 24 h post-hatching and conducted transcriptome profiling. Our analysis identified 4467, 5099, and 4181 differentially expressed genes (DEGs) at respective intervals, compared to the 0 h sample. We further analyzed the expression trends of these DEGs, noting a predominant trend of continuous upregulation. Functional exploration of this trend entailed GO and KEGG functional enrichment along with protein-protein interaction network analyses. We identified GLDC, DUSP14, DPF2, GNAI1, and ZNF271 as core genes, based on their high upregulation rate, implicated in larval growth and development. Similarly, CLTC, MEF2A, PPP1CB, PPP1R12A, and TJP1, marked by high protein interaction numbers, were identified as hub genes and the gene expression levels identified via RNA-seq analysis were validated through qRT-PCR. By analyzing the functions of key and core genes, we found that the ability of A. fangsiao larvae to metabolize carbohydrates, lipids, and other energy substances during early growth may significantly improve with the growth of the larvae. At the same time, muscle related cells in A. fangsiao larvae may develop rapidly, promoting the growth and development of larvae. Our findings provide preliminary insights into the growth and developmental mechanism of A. fangsiao, setting the stage for more comprehensive understanding and broader research into cephalopod growth and development mechanisms.

3.
BMC Genomics ; 24(1): 503, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649007

RESUMEN

BACKGROUND: Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear. RESULTS: In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure. CONCLUSIONS: S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.


Asunto(s)
Sepia , Animales , Sepia/genética , Decapodiformes , Agricultura , Cadmio/toxicidad , Larva/genética
4.
Animals (Basel) ; 13(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570350

RESUMEN

As a quintessential marine teleost, Paralichthys olivaceus demonstrates vulnerability to a range of pathogens. Long-term infection with Edwardsiella tarda significantly inhibits fish growth and even induces death. Gills, blood, and kidneys, pivotal components of the immune system in teleosts, elicit vital regulatory roles in immune response processes including immune cell differentiation, diseased cell clearance, and other immunity-related mechanisms. This study entailed infecting P. olivaceus with E. tarda for 48 h and examining transcriptome data from the three components at 0, 8, and 48 h post-infection employing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis. Network analyses revealed a series of immune response processes after infection and identified multiple key modules and key, core, and hub genes including xpo1, src, tlr13, stat1, and mefv. By innovatively amalgamating WGCNA and PPI network methodologies, our investigation facilitated an in-depth examination of immune response mechanisms within three significant P. olivaceus components post-E. tarda infection. Our results provided valuable genetic resources for understanding immunity in P. olivaceus immune-related components and assisted us in further exploring the molecular mechanisms of E. tarda infection in teleosts.

5.
Front Physiol ; 14: 1189375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234426

RESUMEN

Sepia esculenta is a cephalopod widely distributed in the Western Pacific Ocean, and there has been growing research interest due to its high economic and nutritional value. The limited anti-stress capacity of larvae renders challenges for their adaptation to high ambient temperatures. Exposure to high temperatures produces intense stress responses, thereby affecting survival, metabolism, immunity, and other life activities. Notably, the molecular mechanisms by which larval cuttlefish cope with high temperatures are not well understood. As such, in the present study, transcriptome sequencing of S. esculenta larvae was performed and 1,927 differentially expressed genes (DEGs) were identified. DEGs were subjected to functional enrichment analyses using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The top 20 terms of biological processes in GO and 20 high-temperature stress-related pathways in KEGG functional enrichment analysis were identified. A protein-protein interaction network was constructed to investigate the interaction between temperature stress-related genes. A total of 30 key genes with a high degree of participation in KEGG signaling pathways or protein-protein interactions were identified and subsequently validated using quantitative RT-PCR. Through a comprehensive analysis of the protein-protein interaction network and KEGG signaling pathway, the functions of three hub genes (HSP90AA1, PSMD6, and PSMA5), which belong to the heat shock protein family and proteasome, were explored. The present results can facilitate further understanding of the mechanism of high temperature resistance in invertebrates and provide a reference for the S. esculenta industry in the context of global warming.

6.
Metabolites ; 13(4)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37110131

RESUMEN

As a common and high-concentration heavy metal in the ocean, Cu can induce metal toxicity and significantly affect the metabolic function of marine organisms. Sepia esculenta is an important economic cephalopod found along the east coast of China, the growth, movement, and reproduction of which are all affected by heavy metals. Hitherto, the specific metabolic mechanism of heavy-metal exposure in S. esculenta is still unclear. In this study, we identified 1131 DEGs through transcriptome analysis of larval S. esculenta within 24 h of Cu exposure. GO and KEGG functional enrichment analysis results indicated that Cu exposure may affect purine metabolism, protein digestion and absorption, cholesterol metabolism, and other metabolic processes in S. esculenta larvae. It is worth noting that in this study we explore metabolic mechanism of Cu-exposed S. esculenta larvae through the comprehensive analysis of protein-protein interaction network and KEGG enrichment analysis for the first time and find 20 identified key and hub genes such as CYP7A1, CYP3A11, and ABCA1. Based on their expression, we preliminarily speculate that Cu exposure may inhibit multiple metabolic processes and induce metabolic disorders. Our results lay a foundation for further understanding the metabolic mechanism of S. esculenta against heavy metals and provide theoretical help for S. esculenta artificial breeding.

7.
Fish Shellfish Immunol ; 136: 108733, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37028690

RESUMEN

Amphioctopus fangsiao was a representative economic species in cephalopods, which was vulnerable to marine bacteria. Vibrio anguillarum was a highly infectious pathogen that have recently been found to infect A. fangsiao and inhibit its growth and development. There were significant differences in the immune response mechanisms between egg-protected and egg-unprotected larvae. To explore larval immunity under different egg-protecting behaviors, we infected A. fangsiao larvae with V. anguillarum for 24 h and analyzed the transcriptome data about egg-protected and egg-unprotected larvae infected with 0, 4, 12, and 24 h using weighted gene co-expression networks (WGCNA) and protein-protein interaction (PPI) networks. Network analyses revealed a series of immune response processes after infection, and identified six key modules and multiple immune-related hub genes. Meanwhile, we found that ZNF family, such as ZNF32, ZNF160, ZNF271, ZNF479, and ZNF493 might play significant roles in A. fangsiao immune response processes. We first creatively combined WGCNA and PPI network analysis to deeply explore the immune response mechanisms of A. fangsiao larvae with different egg-protecting behaviors. Our results provided further insights into the immunity of V. anguillarum infected invertebrates, and laid the foundation for exploring the immune differences among cephalopods with different egg protecting behaviors.


Asunto(s)
Octopodiformes , Vibriosis , Vibrio , Animales , Redes Reguladoras de Genes , Larva/genética , Larva/microbiología , Invertebrados/genética , Octopodiformes/genética , Inmunidad , Perfilación de la Expresión Génica/veterinaria , Vibrio/fisiología
8.
Aquat Toxicol ; 258: 106478, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905919

RESUMEN

With extensive use of plastic products, microplastics (MPs, < 5 mm) and nanoplastics (NPs, < 1 µm) have become major pollutants in ecosystem, especially in marine environment. In recent years, researches on the impact of NPs on organisms have gradually increased. However, studies on the influence of NPs on cephalopods are still limited. Golden cuttlefish (Sepia esculenta), an important economic cephalopod, is a shallow marine benthic organism. In this study, the effect of acute exposure (4 h) to 50-nm polystyrene nanoplastics (PS-NPs, 100 µg/L) on the immune response of S. esculenta larvae was analyzed via transcriptome data. A total of 1260 DEGs were obtained in the gene expression analysis. The analyses of GO, KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network were then performed to explore the potential molecular mechanisms of the immune response. Finally, 16 key immune-related DEGs were obtained according to the number of KEGG signaling pathways involved and the PPI number. This study not only confirmed that NPs had an impact on cephalopod immune response, but also provided novel insights for further unmasking the toxicological mechanisms of NPs.


Asunto(s)
Sepia , Contaminantes Químicos del Agua , Animales , Poliestirenos , Sepia/genética , Plásticos , Larva , Microplásticos , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos
9.
Fish Shellfish Immunol ; 132: 108477, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36494033

RESUMEN

Marine organisms are threatened by various environmental contaminants, and nanoplastics (NPs) is one of the most concerned. Studied have shown that NPs has a certain impact on marine organisms, but the specific molecular mechanism is still unclear. At present, researches on the effect of NPs on marine life mostly focus on crustaceans, gastropods, and bivalves. In this study, cephalopod Sepia esculenta larvae were first used to investigate the potential immune response molecular mechanisms caused by PS-NPs (50 nm, 50 mg/L) short-term exposure (4 and 24 h). Through S. esculenta larvae transcriptome profile of gene expression analysis, 548 and 1990 genes showed differential expression at 4 and 24 h after NPs exposure, respectively. GO and KEGG enrichment analysis were performed to find immune related DEGs. Then, the interaction relationship between the immune related DEGs after NPs exposure was known through the constructed protein-protein interaction network. 20 hub genes were found on the base of KEGG pathway numbers involved and protein-protein interaction numbers. This research supply valuable genes for the study of cephalopod immune response caused by NPs, which can help us further uncover the molecular mechanisms of organism against NPs.


Asunto(s)
Sepia , Contaminantes Químicos del Agua , Animales , Larva/metabolismo , Sepia/genética , Sepia/metabolismo , Microplásticos , Transcriptoma , Perfilación de la Expresión Génica , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
10.
Fish Shellfish Immunol ; 132: 108494, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36565999

RESUMEN

As a well-known marine metal element, Cd can significantly affect bivalve mollusk life processes such as growth and development. However, the effects of Cd on the molecular mechanisms of the economically important cephalopod species Sepia esculenta remain unclear. In this study, S. esculenta larval immunity exposed to Cd is explored based on RNA-Seq. The analyses of GO, KEGG, and protein-protein interaction (PPI) network of 1,471 differentially expressed genes (DEGs) reveal that multiple immune processes are affected by exposure such as inflammatory reaction and cell adhesion. Comprehensive analyses of KEGG signaling pathways and the PPI network are first used to explore Cd-exposed S. esculenta larval immunity, revealing the presence of 16 immune-related key and hub genes involved in exposure response. Results of gene and pathway functional analyses increase our understanding of Cd-exposed S. esculenta larval immunity and improve our overall understanding of mollusk immune functions.


Asunto(s)
Sepia , Animales , Sepia/genética , Decapodiformes/genética , Larva/genética , Cadmio/toxicidad , Transcriptoma , Perfilación de la Expresión Génica/veterinaria , Inmunidad/genética , Biología Computacional/métodos
11.
Front Immunol ; 13: 963931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211441

RESUMEN

Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of S. esculenta, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile S. esculenta. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile S. esculenta. Fifteen key genes that might regulate the immunity of S. esculenta are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed S. esculenta juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.


Asunto(s)
Sepia , Animales , Cadmio/toxicidad , Cobre , Decapodiformes/genética , Perfilación de la Expresión Génica , Inmunidad/genética , Sepia/genética , Transcriptoma
12.
Fish Shellfish Immunol ; 130: 252-260, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122637

RESUMEN

Sepia esculenta is a common economic cephalopod that has received extensive attention due to the tender meat, rich protein content and certain medicinal value thereof. Over the past decade, multiple industries have discharged waste into the ocean in large quantities, thereby significantly increasing the concentration of heavy metals in the ocean. Copper (Cu) is a common heavy metal in the ocean. The increase of Cu content will affect numerous biological processes such as immunity and metabolism of marine organisms. High concentrations of Cu may inhibit S. esculenta growth, development, swimming, and other processes, which would significantly affect its culture. In this research, transcriptome analysis is used to initially explore Cu-exposed S. esculenta larval immune response mechanisms. And compared to control group with normally growing larvae, 2056 differentially expressed genes (DEGs) are identified in experimental group with Cu-exposed larvae. The results of DEGs functional enrichment analyses including GO and KEGG indicate that Cu exposure might promote inflammatory and innate immune responses in cuttlefish larvae. Then, 10 key genes that might regulate larval immunity are identified using a comprehensive analysis that combines protein-protein interaction (PPI) network and KEGG functional enrichment analyses, of which three genes with the highest number of protein interactions or involve in more KEGG signaling pathways are identified as hub genes that might significantly affect larval immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway are used for the first time to explore Cu-exposed S. esculenta larval immune response mechanisms. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide valuable resources for further understanding mollusk immunity.


Asunto(s)
Metales Pesados , Sepia , Animales , Cobre/toxicidad , Decapodiformes/genética , Perfilación de la Expresión Génica/veterinaria , Inmunidad , Larva , Sepia/genética , Transcriptoma
13.
Dev Comp Immunol ; 136: 104509, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35963309

RESUMEN

Gram-negative bacteria are significant pathogens in the ocean, posing serious threats to marine organisms. Lipopolysaccharide (LPS) is a characteristic chemical constituent in Gram-negative bacteria that can be recognized by the pattern recognition receptor (PRR) of immune cells. This system is often used to simulate the invasion of bacteria. Blood is a transport channel for immune cells, and its transcriptome information obtained from Amphioctopus fangsiao stimulated by LPS is essential for understanding the antibacterial biological mechanisms of this species. In this study, we analyzed the gene expression profiles of A. fangsiao blood within 24h under LPS stress and found 778 and 561 differentially expressed genes (DEGs) at 6 and 24h, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to search for immune-related DEGs. The relationships among immune genes were examined by constructing a protein-protein interaction (PPI) network. Finally, 16 hub genes were identified based on the PPI network and KEGG enrichment analysis. The expression profiles of these genes were verified using quantitative RT-PCR (qRT-PCR). This research provides valuable resources for the healthy culture of A. fangsiao and helps us understand the molecular mechanisms of innate immunity.


Asunto(s)
Perfilación de la Expresión Génica , Lipopolisacáridos , Animales , Biología Computacional , Ontología de Genes , Redes Reguladoras de Genes , Inmunidad Innata/genética , Transcriptoma
14.
Fish Shellfish Immunol ; 124: 430-441, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35472401

RESUMEN

Mollusks have recently received increasing attention because of their unique immune systems. Mollusks such as Amphioctopus fangsiao are economically important cephalopods, and the effects of their egg-protecting behavior on the larval immune response are unclear. Meanwhile, little research has been done on the resistance response of cephalopod larvae infected with pathogenic bacteria such as Vibrio anguillarum. In this study, V. anguillarum was used to infect the primary hatching A. fangsiao larvae under different egg-protecting behaviors for 24 h, and a total of 7156 differentially expressed genes (DEGs) were identified at four time points after hatching based on transcriptome analysis. GO and KEGG enrichment analyses showed that multiple immune-related GO terms and KEGG signaling pathways were enriched. Protein-protein interaction networks (PPI networks) were used to search functional relationships between immune-related DEGs. Finally, 20 hub genes related to multiple gene functions or involved in multiple signaling pathways were identified, and their accuracy was verified using quantitative RT-PCR. PPI networks were first used to study the effects A. fangsiao larvae after infection with V. anguillarum under different egg-protecting behaviors. The results provide significant genetic resources for exploring invertebrate larval immune processes. The data lays a foundation for further study the immune response mechanisms for invertebrates after infection.


Asunto(s)
Enfermedades de los Peces , Octopodiformes , Vibriosis , Animales , Perfilación de la Expresión Génica/veterinaria , Inmunidad , Larva/genética , Octopodiformes/genética , Transcriptoma , Vibrio
15.
Artículo en Inglés | MEDLINE | ID: mdl-35150972

RESUMEN

Sperm storage in the female body is an important strategy in animal reproductive behavior. Amphioctopus fangsiao is an economically important cephalopod that has a sperm storage period of up to seven months. There are few studies concerning the mechanism of sperm storage in A. fangsiao. In this study, we performed transcriptome gene expression profiling of the oviductal glands at different phases (presence and absence of sperm storage). In total, 7943 differentially expressed genes (DEGs) comprising 4737 upregulated and 3206 downregulated genes were identified. GO and KEGG enrichment analyses were used to search for sperm storage-related genes. A protein interaction network was constructed to examine the interactions between genes. Nineteen genes associated with immunity, apoptosis, and autophagy were obtained and verified by qRT-PCR. This is the first comprehensive analysis of sperm storage-related genes in A. fangsiao. The results provide basic insights into the complex sperm storage mechanism of A. fangsiao.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Masculino , Análisis por Micromatrices , Mapas de Interacción de Proteínas , Espermatozoides
16.
Fish Shellfish Immunol ; 117: 113-123, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34333127

RESUMEN

Protection via of the immune system is indispensable to the life of organisms. Within an immune network, problems with a given link will affect the normal life activities of the organism. Octopus ocellatus is cephalopod widely distributed throughout the world's oceans. Because of its unique nervous system and locomotive organs, research on this species has gradually increased in recent years. Many immune response mechanisms associated with behaviors of O. ocellatus are still unclear. Moreover, as a factor affecting the normal growth of O. ocellatus, egg protection has rarely been considered in previous behavioral studies. In this study, we analyzed the transcriptome profile of gene expression in O. ocellatus larvae, and identified 5936 differentially expressed genes (DEGs). GO and KEGG enrichment analyses were used to search for immune-related DEGs. Protein-protein interaction networks were constructed to examine the interactions between immune-related genes. Fifteen hub genes involved in multiple KEGG signaling pathways or with multiple protein-protein interaction relationships were obtained and verified by quantitative RT-PCR. We first studied the effects of egg protection on the immunity of O. ocellatus larvae by means of protein-protein interaction networks, and the results provide valuable genetic resources for understanding the immunity of invertebrate larvae. The data serve as a foundation for further research on the egg-protecting behavior of invertebrates.


Asunto(s)
Conducta Animal , Octopodiformes/genética , Octopodiformes/inmunología , Óvulo , Animales , Femenino , Perfilación de la Expresión Génica , Larva/genética , Larva/inmunología , Mapas de Interacción de Proteínas , Transcriptoma
17.
Front Physiol ; 12: 762681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069236

RESUMEN

The metabolic processes of organisms are very complex. Each process is crucial and affects the growth, development, and reproduction of organisms. Metabolism-related mechanisms in Octopus ocellatus behaviors have not been widely studied. Brood-care is a common behavior in most organisms, which can improve the survival rate and constitution of larvae. Octopus ocellatus carried out this behavior, but it was rarely noticed by researchers before. In our study, 3,486 differentially expressed genes (DEGs) were identified based on transcriptome analysis of O. ocellatus. We identify metabolism-related DEGs using GO and KEGG enrichment analyses. Then, we construct protein-protein interaction networks to search the functional relationships between metabolism-related DEGs. Finally, we identified 10 hub genes related to multiple gene functions or involved in multiple signal pathways and verified them using quantitative real-time polymerase chain reaction (qRT-PCR). Protein-protein interaction networks were first used to study the effects of brood-care behavior on metabolism in the process of growing of O. ocellatus larvae, and the results provide us valuable genetic resources for understanding the metabolic processes of invertebrate larvae. The data lay a foundation for further study the brood-care behavior and metabolic mechanisms of invertebrates.

18.
Plant Dis ; 105(5): 1531-1538, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33174799

RESUMEN

Grapevine vein clearing virus (GVCV) causes severe stunting and death of cultivated grapevines and is prevalent in native Vitis spp. and Ampelopsis cordata in the Midwest region of the United States. GVCV can be transmitted from wild A. cordata to Vitis spp. by grape aphid (Aphis illinoisensis) under greenhouse conditions, but its prevalence, genetic composition, and genome number in native grape aphids are unknown. In this study, we collected grape aphids from native Vitaceae across the state of Missouri in 2018 and 2019, and conducted diagnostic, genetic, and quantitative analyses. GVCV was detected in 91 of the 105 randomly sampled communities on 71 Vitaceae plants (87%). It was present in 211 of 525 single grape aphids (40%). Diverse GVCV variants from aphids were present on both GVCV-negative and GVCV-positive plants. Identical GVCV variants were found in grape aphids sampled from wild and cultivated Vitaceae, indicating that viruliferous aphids likely migrate and disperse GVCV variants among wild and cultivated Vitaceae. In addition, we found that the number of GVCV genomes varies largely in the stylet and body of individual aphids. Our study provides a snapshot of GVCV epidemics and genetic structure in its mobile vector and sessile hosts. This presents a good model for studying the epidemiology, ecology, and evolution of a plant virus.


Asunto(s)
Áfidos , Badnavirus , Virus de Plantas , Vitis , Animales , Enfermedades de las Plantas , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...