Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(3): e0009224, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38411121

RESUMEN

Toxoplasma gondii is an apicomplexan parasite that is the cause of toxoplasmosis, a potentially lethal disease for immunocompromised individuals. During in vivo infection, the parasites encounter various growth environments, such as hypoxia. Therefore, the metabolic enzymes in the parasites must adapt to such changes to fulfill their nutritional requirements. Toxoplasma can de novo biosynthesize some nutrients, such as heme. The parasites heavily rely on their own heme production for intracellular survival. Notably, the antepenultimate step within this pathway is facilitated by coproporphyrinogen III oxidase (CPOX), which employs oxygen to convert coproporphyrinogen III to protoporphyrinogen IX through oxidative decarboxylation. Conversely, some bacteria can accomplish this conversion independently of oxygen through coproporphyrinogen dehydrogenase (CPDH). Genome analysis found a CPDH ortholog in Toxoplasma. The mutant Toxoplasma lacking CPOX displays significantly reduced growth, implying that T. gondii CPDH (TgCPDH) potentially functions as an alternative enzyme to perform the same reaction as CPOX under low-oxygen conditions. In this study, we demonstrated that TgCPDH exhibits CPDH activity by complementing it in a heme synthesis-deficient Salmonella mutant. Additionally, we observed an increase in TgCPDH expression in Toxoplasma when it grew under hypoxic conditions. However, deleting TgCPDH in both wild-type and heme-deficient parasites did not alter their intracellular growth under both ambient and low-oxygen conditions. This research marks the first report of a CPDH-like protein in eukaryotic cells. Although TgCPDH responds to hypoxic conditions and possesses enzymatic activity, our findings revealed that it does not directly affect acute Toxoplasma infections in vitro and in vivo. IMPORTANCE: Toxoplasma gondii is a ubiquitous parasite capable of infecting a wide range of warm-blooded hosts, including humans. During its life cycle, these parasites must adapt to varying environmental conditions, including situations with low-oxygen levels, such as intestine and spleen tissues. Our research, in conjunction with studies conducted by other laboratories, has revealed that Toxoplasma primarily relies on its own heme production during acute infections. Intriguingly, in addition to this classical heme biosynthetic pathway, the parasites encode a putative oxygen-independent coproporphyrinogen dehydrogenase (CPDH), suggesting its potential contribution to heme production under varying oxygen conditions, a feature typically observed in simpler organisms like bacteria. Notably, so far, CPDH has only been identified in some bacteria for heme biosynthesis. Our study discovered that Toxoplasma harbors a functional enzyme displaying CPDH activity, which alters its expression in the parasites when they face fluctuating oxygen levels in their surroundings.


Asunto(s)
Toxoplasma , Humanos , Toxoplasma/metabolismo , Coproporfirinógenos/metabolismo , Hemo , Coproporfirinógeno Oxidasa/genética , Hipoxia , Oxígeno/metabolismo
2.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014006

RESUMEN

Toxoplasma gondii is an apicomplexan parasite that is the cause of toxoplasmosis, a potentially lethal disease for immunocompromised individuals. During in vivo infection, the parasites encounter various growth environments, such as hypoxia. Therefore, the metabolic enzymes in the parasites must adapt to such changes to fulfill their nutritional requirements. Toxoplasma can de novo biosynthesize some nutrients, such as heme. The parasites heavily rely on their own heme production for intracellular survival. Notably, the antepenultimate step within this pathway is facilitated by coproporphyrinogen III oxidase (CPOX), which employs oxygen to convert coproporphyrinogen III to protoporphyrinogen IX through oxidative decarboxylation. Conversely, some bacteria can accomplish this conversion independently of oxygen through coproporphyrinogen dehydrogenase (CPDH). Genome analysis found a CPDH ortholog in Toxoplasma. The mutant Toxoplasma lacking CPOX displays significantly reduced growth, implying that TgCPDH potentially functions as an alternative enzyme to perform the same reaction as CPOX under low oxygen conditions. In this study, we demonstrated that TgCPDH exhibits coproporphyrinogen dehydrogenase activity by complementing it in a heme synthesis-deficient Salmonella mutant. Additionally, we observed an increase in TgCPDH expression in Toxoplasma when it grew under hypoxic conditions. However, deleting TgCPDH in both wildtype and heme-deficient parasites did not alter their intracellular growth under both ambient and low oxygen conditions. This research marks the first report of a coproporphyrinogen dehydrogenase-like protein in eukaryotic cells. Although TgCPDH responds to hypoxic conditions and possesses enzymatic activity, our findings suggest that it does not directly affect intracellular infection or the pathogenesis of Toxoplasma parasites.

3.
mSphere ; 8(4): e0015623, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37272703

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite whose tachyzoite form causes disease via a lytic growth cycle. Its metabolic and cellular pathways are primarily designed to ensure parasite survival within a host cell. But during its lytic cycle, tachyzoites are exposed to the extracellular milieu and prolonged exposure requires activation of stress response pathways that include reprogramming the parasite proteome. Regulation of protein synthesis is therefore important for extracellular survival. We previously reported that in extracellularly stressed parasites, the elongation phase of protein synthesis is regulated by the Toxoplasma oxygen-sensing protein, PHYb. PHYb acts by promoting the activity of elongation factor eEF2, which is a GTPase that catalyzes the transfer of the peptidyl-tRNA from the A site to the P site of the ribosome. In the absence of PHYb, eEF2 is hyper-phosphorylated, which inhibits eEF2 from interacting with the ribosome. eEF2 kinases are atypical calcium-dependent kinases and BLAST analyses revealed the parasite kinase, CDPK3, as the most highly homologous to the Saccharomyces cerevisiae eEF2 kinase, RCK2. In parasites exposed to extracellular stress, loss of CDPK3 leads to decreased eEF2 phosphorylation and enhanced rates of elongation. Furthermore, co-immunoprecipitation studies revealed that CDPK3 and eEF2 interact in stressed parasites. Since CDPK3 and eEF2 normally localize to the plasma membrane and cytosol, respectively, we investigated how the two can interact. We report that under stress conditions, CDPK3 is not N-myristoylated likely leading to its cytoplasmic localization. In summary, we have identified a novel function for CDPK3 as the first protozoan extracellular stress-induced eEF2 kinase.IMPORTANCEAlthough it is an obligate intracellular parasite, Toxoplasma must be able to survive in the extracellular environment. Our previous work indicated that ensuring that elongation continues during protein synthesis is part of this stress response and that this is due to preventing phosphorylation of elongation factor 2. But the identity of the eEF2 kinase has remained unknown in Toxoplasma and other protozoan parasites. Here, we identify CDPK3 as the first protozoan eEF2 kinase and demonstrate that it is part of a stress response initiated when parasites are exposed to extracellular stress. We also demonstrate that CDPK3 engages eEF2 as a result of its relocalization from the plasma membrane to the cytosol.


Asunto(s)
Parásitos , Toxoplasma , Animales , Toxoplasma/metabolismo , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Calcio/metabolismo , Proteínas Quinasas/metabolismo
4.
PLoS Pathog ; 15(7): e1007946, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31348812

RESUMEN

By binding to the adaptor protein SKP1 and serving as substrate receptors for the SKP1 Cullin, F-box E3 ubiquitin ligase complex, F-box proteins regulate critical cellular processes including cell cycle progression and membrane trafficking. While F-box proteins are conserved throughout eukaryotes and are well studied in yeast, plants, and animals, studies in parasitic protozoa are lagging. We have identified eighteen putative F-box proteins in the Toxoplasma genome of which four have predicted homologs in Plasmodium. Two of the conserved F-box proteins were demonstrated to be important for Toxoplasma fitness and here we focus on an F-box protein, named TgFBXO1, because it is the most highly expressed by replicative tachyzoites and was also identified in an interactome screen as a Toxoplasma SKP1 binding protein. TgFBXO1 interacts with Toxoplasma SKP1 confirming it as a bona fide F-box protein. In interphase parasites, TgFBXO1 is a component of the Inner Membrane Complex (IMC), which is an organelle that underlies the plasma membrane. Early during replication, TgFBXO1 localizes to the developing daughter cell scaffold, which is the site where the daughter cell IMC and microtubules form and extend from. TgFBXO1 localization to the daughter cell scaffold required centrosome duplication but before kinetochore separation was completed. Daughter cell scaffold localization required TgFBXO1 N-myristoylation and was dependent on the small molecular weight GTPase, TgRab11b. Finally, we demonstrate that TgFBXO1 is required for parasite growth due to its function as a daughter cell scaffold effector. TgFBXO1 is the first F-box protein to be studied in apicomplexan parasites and represents the first protein demonstrated to be important for daughter cell scaffold function.


Asunto(s)
Proteínas F-Box/fisiología , Proteínas Protozoarias/fisiología , Toxoplasma/crecimiento & desarrollo , Toxoplasma/patogenicidad , Animales , Proteínas F-Box/antagonistas & inhibidores , Proteínas F-Box/genética , Técnicas de Silenciamiento del Gen , Genes Protozoarios , Humanos , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Quinasas Asociadas a Fase-S/fisiología , Toxoplasma/genética
5.
BMC Microbiol ; 15: 269, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26589870

RESUMEN

BACKGROUND: Nucleotide sugar transporters (NSTs) play an essential role in translocating nucleotide sugars into the lumen of the endoplasmic reticulum and Golgi apparatus to be used as substrates in glycosylation reactions. This intracellular transport is an essential step in the biosynthesis of glycoconjugates. RESULTS: We have identified a family of 11 putative NSTs in Trypanosoma cruzi, the etiological agent of Chagas' disease. A UDP-N-acetylglucosamine transporter, TcNST1, was identified by a yeast complementation approach. Based on a phylogenetic analysis four candidate genes were selected and used for complementation assays in a Kluyveromyces lactis mutant strain. The transporter is likely expressed in all stages of the parasite life cycle and during differentiation of epimastigotes to infective metacyclics. Immunofluorescence analyses of a GFP-TcNST1 fusion protein indicate that the transporter is localized to the Golgi apparatus. As many NSTs are multisubstrate transporters, we also tested the capacity of TcNST1 to transport GDP-Man. CONCLUSIONS: We have identified a UDP-N-acetylglucosamine transporter in T. cruzi, which is specifically localized to the Golgi apparatus and seems to be expressed, at the mRNA level, throughout the parasite life cycle. Functional studies of TcNST1 will be important to unravel the role of NSTs and specific glycoconjugates in T. cruzi survival and infectivity.


Asunto(s)
Aparato de Golgi/enzimología , Proteínas de Transporte de Membrana/genética , Trypanosoma cruzi/enzimología , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Aparato de Golgi/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Estadios del Ciclo de Vida , Proteínas de Transporte de Membrana/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...