Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Cell Biol ; 219(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32492081

RESUMEN

In macroautophagy, membrane structures called autophagosomes engulf substrates and deliver them for lysosomal degradation. Autophagosomes enwrap a variety of targets with diverse sizes, from portions of cytosol to larger organelles. However, the mechanism by which autophagosome size is controlled remains elusive. We characterized a novel ER membrane protein, ERdj8, in mammalian cells. ERdj8 localizes to a meshwork-like ER subdomain along with phosphatidylinositol synthase (PIS) and autophagy-related (Atg) proteins. ERdj8 overexpression extended the size of the autophagosome through its DnaJ and TRX domains. ERdj8 ablation resulted in a defect in engulfing larger targets. C. elegans, in which the ERdj8 orthologue dnj-8 was knocked down, could perform autophagy on smaller mitochondria derived from the paternal lineage but not the somatic mitochondria. Thus, ERdj8 may play a critical role in autophagosome formation by providing the capacity to target substrates of diverse sizes for degradation.


Asunto(s)
Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Macroautofagia , Animales , Animales Modificados Genéticamente , Autofagosomas/genética , Autofagosomas/ultraestructura , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Células COS , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/genética , Retículo Endoplásmico/ultraestructura , Proteínas del Choque Térmico HSP40/genética , Células HeLa , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura
5.
Curr Biol ; 28(16): 2544-2556.e5, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30100339

RESUMEN

Aging (senescence) is characterized by the development of numerous pathologies, some of which limit lifespan. Key to understanding aging is discovery of the mechanisms (etiologies) that cause senescent pathology. In C. elegans, a major senescent pathology of unknown etiology is atrophy of its principal metabolic organ, the intestine. Here we identify a cause of not only this pathology but also of yolky lipid accumulation and redistribution (a form of senescent obesity): autophagy-mediated conversion of intestinal biomass into yolk. Inhibiting intestinal autophagy or vitellogenesis rescues both visceral pathologies and can also extend lifespan. This defines a disease syndrome leading to multimorbidity and contributing to late-life mortality. Activation of gut-to-yolk biomass conversion by insulin/IGF-1 signaling (IIS) promotes reproduction and senescence. This illustrates how major, IIS-promoted senescent pathologies in C. elegans can originate not from damage accumulation but from direct effects of futile, continued action of a wild-type biological program (vitellogenesis).


Asunto(s)
Envejecimiento/fisiología , Autofagia/fisiología , Caenorhabditis elegans/fisiología , Yema de Huevo/metabolismo , Intestinos/fisiología , Vitelogénesis/fisiología , Animales , Transducción de Señal
6.
Microb Cell ; 5(1): 4-31, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29354647

RESUMEN

Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.

7.
PLoS One ; 11(2): e0148650, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26862897

RESUMEN

Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.


Asunto(s)
Proteínas Fúngicas/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Agua , División Celular , Medios de Cultivo/farmacología , Degradación Asociada con el Retículo Endoplásmico , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Micología/métodos , Péptidos/análisis , Agregado de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada
8.
Biochem Biophys Res Commun ; 457(3): 473-8, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25600811

RESUMEN

The Heat Shock Response (HSR) in the cytosol and the Unfolded Protein Response (UPR) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. In Saccharomyces cerevisiae, HSR is regulated by transcription factor Hsf1, and UPR Ire1 branch activates transcription factor Hac1. Here we demonstrate systemic regulation of proteostasis through a direct link between UPR and HSR. Hsf1 is activated by UPR and its HSR depends on intact UPR. This link is mediated by Sir2, which is not only essential for Hsf1 HSR but also required for Hsf1 activation by UPR. Excess Sir2 augments Hsf1 activation by UPR and can compensate for its impairment in UPR-defective strains. Sir2 is upregulated by UPR but, in turn, it also attenuates this pathway, ensuring that UPR functions only transiently.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Respuesta de Proteína Desplegada/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
PLoS One ; 9(10): e111505, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25356557

RESUMEN

Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.


Asunto(s)
Respuesta al Choque Térmico , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucosa/farmacología , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Modelos Biológicos , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Transcripción/metabolismo
10.
PLoS One ; 7(12): e50490, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226521

RESUMEN

p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/química , Unión Competitiva , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Fluorometría , Hidrólisis , Cinética , Proteínas Nucleares/química , Conformación Proteica , Resonancia por Plasmón de Superficie
12.
PLoS One ; 7(9): e44785, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970306

RESUMEN

Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an "aggregation timeline". This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Choque Térmico/fisiología , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/fisiología , Sirtuina 2/fisiología , Factores de Transcripción/fisiología , Western Blotting , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/metabolismo , Microscopía Fluorescente , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Transcripción/metabolismo
13.
Biochim Biophys Acta ; 1823(1): 67-82, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21820014

RESUMEN

The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.


Asunto(s)
Proteasas ATP-Dependientes/química , Complejo de la Endopetidasa Proteasomal/química , Proteasas ATP-Dependientes/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Animales , Archaea/enzimología , Degradación Asociada con el Retículo Endoplásmico , Humanos , Hidrólisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteolisis
14.
Genetics ; 184(3): 695-706, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20038635

RESUMEN

The endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway eliminates aberrant proteins from the ER. The key role of Cdc48p-Ufd1p-Npl4p is indicated by impaired ERAD in Saccharomyces cerevisiae with mutations in any of this complex's genes. We identified SSZ1 in genetic screens for cdc48-10 suppressors and show that it upregulates Cdc48p via the pleiotropic drug resistance (PDR) network. A pSSZ1 plasmid restored impaired ERAD-M of 6myc-Hmg2 in cdc48-10, ufd1-2, and npl4-1, while SSZ1 deletion had no effect. Ssz1p activates Pdr1p, the PDR master regulator. Indeed, plasmids of PDR1 or its target gene RPN4 increased cdc48-10p levels and restored ERAD-M in cdc48-10. Rpn4p regulates transcription of proteasome subunits and CDC48, thus RPN4 deletion abolished ERAD. However, the diminished proteasome level in Deltarpn4 was sufficient for degrading a cytosolic substrate, whereas the impaired ERAD-M was the result of diminished Cdc48p and was restored by expression of pCDC48. The corrected ERAD-M in the hypomorphic strains of the Cdc48 partners ufd1-2 and npl4-1 by the pCDC48 plasmid, and in cdc48-10 cells by the pcdc48-10 plasmid, combined with the finding that neither pSSZ1 nor pcdc48-10 restored ERAD-L of CPY*-HA, support our conclusion that Ssz1p suppressing effects is brought about by upregulating Cdc48p.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Farmacorresistencia Fúngica/fisiología , Retículo Endoplásmico/genética , Eliminación de Gen , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Complejo de la Endopetidasa Proteasomal/biosíntesis , Complejo de la Endopetidasa Proteasomal/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/fisiología , Regulación hacia Arriba/fisiología , Proteína que Contiene Valosina , Proteínas de Transporte Vesicular/genética
15.
Biochemistry ; 47(41): 10970-80, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18803404

RESUMEN

The calnexin/calreticulin cycle is a quality control system responsible for promoting the folding of newly synthesized glycoproteins entering the endoplasmic reticulum (ER). The association of calnexin and calreticulin with the glycoproteins is regulated by ER glucosidase II, which hydrolyzes Glc 2Man X GlcNAc 2 glycans to Glc 1Man X GlcNAc 2 and further to Glc 0Man X GlcNAc 2 ( X represents any number between 5 and 9). To gain new insights into the reaction mechanism of glucosidase II, we developed a kinetic model that describes the interactions between glucosidase II, calnexin/calreticulin, and the glycans. Our model accurately reconstructed the hydrolysis of glycans with nine mannose residues and glycans with seven mannose residues, as measured by Totani et al. [Totani, K., Ihara, Y., Matsuo, I., and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508]. Intriguingly, our model predicted that glucosidase II was inhibited by its nonglucosylated end products, where the inhibitory effect of Glc 0Man 7GlcNAc 2 was much stronger than that of Glc 0Man 9GlcNAc 2. These predictions were confirmed experimentally. Moreover, our model suggested that glycans with a different number of mannose residues can be equivalent substrates of glucosidase II, in contrast to what had been previously thought. We discuss the possibility that nonglucosylated glycans, existing in the ER, might regulate the entry of newly synthesized glycoproteins into the calnexin/calreticulin cycle. Our model also shows that glucosidase II does not interact with monoglucosylated glycans while they are bound to calnexin or calreticulin.


Asunto(s)
Retículo Endoplásmico/enzimología , Inhibidores de Glicósido Hidrolasas , Algoritmos , Cromatografía Líquida de Alta Presión , Glicosilación , Hidrólisis , Cinética , alfa-Glucosidasas
16.
Mol Immunol ; 46(1): 97-105, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18692901

RESUMEN

Disulfide bonds within and between proteins are responsible for stabilizing folding and covalent assembly. They are thought to form by an obligatory pathway that leads to a single native structure compatible with secretion. We have previously demonstrated that the intradomain disulfide in the C(H)1 domain of the Ig gamma2b heavy chains was dispensable for secretion [Elkabetz, Y., Argon, Y., Bar-Nun, S., 2005. Cysteines in C(H)1 underlie retention of unassembled Ig heavy chains. J. Biol. Chem. 280, 14402-14412]. Here we show that the heavy chain-light chain interchain disulfide is also dispensable. gamma2b with mutated Cys128, which normally disulfide bonds with the light chain, still assembled with lambdaI light chain into a secretion-competent, tetrameric IgG2b. This assembly comprised of a covalent homo-dimer of mutant heavy chains (C128S(2)) accompanied non-covalently by a covalent homo-dimer of light chains (lambda(2)). The lambda(2) homo-dimer formed only upon association with C128S(2), through disulfide bonding of the two "orphan" heavy chain-interacting Cys214 in lambdaI. The unique Ig tetramer was secreted efficiently as a functional antibody whose antigen-binding capacity resembled that of normal IgG2b. Therefore, disulfide bonding of Ig manifests considerable plasticity and can generate more than one functional structure that is considered native by the cellular quality control system.


Asunto(s)
Disulfuros/inmunología , Inmunoglobulinas/inmunología , Animales , Células COS , Chlorocebus aethiops , Cisteína , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Ratones , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína
17.
J Biol Chem ; 283(11): 7166-75, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18174173

RESUMEN

Endoplasmic reticulum (ER)-associated degradation (ERAD) eliminates aberrant proteins from the ER by dislocating them to the cytoplasm where they are tagged by ubiquitin and degraded by the proteasome. Six distinct AAA-ATPases (Rpt1-6) at the base of the 19S regulatory particle of the 26S proteasome recognize, unfold, and translocate substrates into the 20S catalytic chamber. Here we show unique contributions of individual Rpts to ERAD by employing equivalent conservative substitutions of the invariant lysine in the ATP-binding motif of each Rpt subunit. ERAD of two substrates, luminal CPY*-HA and membrane 6myc-Hmg2, is inhibited only in rpt4R and rpt2RF mutants. Conversely, in vivo degradation of a cytosolic substrate, DeltassCPY*-GFP, as well as in vitro cleavage of Suc-LLVY-AMC are hardly affected in rpt4R mutant yet are inhibited in rpt2RF mutant. Together, we find that equivalent mutations in RPT4 and RPT2 result in different phenotypes. The Rpt4 mutation is manifested in ERAD defects, whereas the Rpt2 mutation is manifested downstream, in global proteasomal activity. Accordingly, rpt4R strain is particularly sensitive to ER stress and exhibits an activated unfolded protein response, whereas rpt2RF strain is sensitive to general stress. Further characterization of Rpt4 involvement in ERAD reveals that it participates in CPY*-HA dislocation, a function previously attributed to p97/Cdc48, another AAA-ATPase essential for ERAD of CPY*-HA but dispensable for proteasomal degradation of DeltassCPY*-GFP. Pointing to Cdc48 and Rpt4 overlapping functions, excess Cdc48 partially restores impaired ERAD in rpt4R, but not in rpt2RF. We discuss models for Cdc48 and Rpt4 cooperation in ERAD.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Cadmio/química , Canavanina/farmacología , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/química , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Fenotipo , Desnaturalización Proteica , Tunicamicina/farmacología , Proteína que Contiene Valosina
18.
J Cell Sci ; 120(Pt 24): 4377-87, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18042626

RESUMEN

Endoplasmic reticulum-associated degradation (ERAD) eliminates aberrant proteins from the secretory pathway. Such proteins are retained in the endoplasmic reticulum and targeted for degradation by the ubiquitin-proteasome system. Cis-acting motifs can function in ERAD as retention signals, preventing vesicular export from the endoplasmic reticulum, or as degrons, targeting proteins for degradation. Here, we show that microstp, the C-terminal 20-residue tailpiece of the secretory IgM mus heavy chain, functions both as a portable retention signal and as an ERAD degron. Retention of microstp fusions of secreted versions of thyroid peroxidase and yellow fluorescent protein in the endoplasmic reticulum requires the presence of the penultimate cysteine of microstp. In its role as a portable degron, the microstp targets the retained proteins for ERAD but does not serve as an obligatory ubiquitin-conjugation site. Abolishing microstp glycosylation accelerates the degradation of both microstpCys-fused substrates, yet absence of the N-glycan eliminates the requirement for the penultimate cysteine in the retention and degradation of the unglycosylated yellow fluorescent protein. Hence, the dual role played by the microstpCys motif as a retention signal and as a degron can be attributed to distinct elements within this sequence.


Asunto(s)
Secuencias de Aminoácidos , Retículo Endoplásmico/metabolismo , Inmunoglobulina M/metabolismo , Cadenas mu de Inmunoglobulina/metabolismo , Señales de Clasificación de Proteína/fisiología , Proteínas/metabolismo , Sustitución de Aminoácidos , Línea Celular , Glicosilación , Células HeLa , Humanos , Inmunoglobulina M/química , Cadenas mu de Inmunoglobulina/química , Yoduro Peroxidasa/metabolismo , Proteínas Luminiscentes/metabolismo , Polisacáridos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitina/metabolismo
20.
J Biol Chem ; 280(15): 14402-12, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15705573

RESUMEN

Conformation, structure, and oligomeric state of immunoglobulins not only control quality and functional properties of antibodies but are also critical for immunoglobulins secretion. Unassembled immunoglobulin heavy chains are retained intracellularly by delayed folding of the C(H)1 domain and irreversible interaction of BiP with this domain. Here we show that the three C(H)1 cysteines play a central role in immunoglobulin folding, assembly, and secretion. Remarkably, ablating all three C(H)1 cysteines negates retention and enables BiP cycling and non-canonical folding and assembly. This phenomenon is explained by interdependent formation of intradomain and interchain disulfides, although both bonds are dispensable for secretion. Substituting Cys-195 prevents formation not only of the intradomain disulfide, but also of the interchain disulfide bond with light chain, BiP displacement, and secretion. Mutating the light chain-interacting Cys-128 hinders disulfide bonding of intradomain cysteines, allowing their opportunistic bonding with light chain, without hampering secretion. We propose that the role of C(H)1 cysteines in immunoglobulin assembly and secretion is not simply to engage in disulfide bridges, but to direct proper folding and interact with the retention machinery.


Asunto(s)
Cisteína/química , Proteínas de Choque Térmico/química , Cadenas Pesadas de Inmunoglobulina/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Animales , Células COS , Cartilla de ADN/química , Disulfuros/química , Electroforesis en Gel de Poliacrilamida , Chaperón BiP del Retículo Endoplásmico , Glicósido Hidrolasas/química , Cadenas Ligeras de Inmunoglobulina/química , Inmunoprecipitación , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Oxígeno/química , Elastasa Pancreática/química , Papaína/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...