Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Physiol ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38348606

RESUMEN

We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.

2.
Top Spinal Cord Inj Rehabil ; 29(2): 34-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235195

RESUMEN

Background: Spinal cord injury (SCI) is associated with an increased risk and prevalence of cardiopulmonary and cerebrovascular disease-related morbidity and mortality. The factors that initiate, promote, and accelerate vascular diseases and events in SCI are poorly understood. Clinical interest in circulating endothelial cell-derived microvesicles (EMVs) and their microRNA (miRNA) cargo has intensified due to their involvement in endothelial dysfunction, atherosclerosis, and cerebrovascular events. Objectives: The aim of this study was to determine whether a subset of vascular-related miRNAs is differentially expressed in EMVs isolated from adults with SCI. Methods: We assessed eight adults with tetraplegia (7 male/1 female; age: 46±4 years; time since injury: 26±5 years) and eight uninjured (6 male/2 female; age: 39±3 years). Circulating EMVs were isolated, enumerated, and collected from plasma by flow cytometry. The expression of vascular-related miRNAs in EMVs was assessed by RT-PCR. Results: Circulating EMV levels were significantly higher (~130%) in adults with SCI compared with uninjured adults. The expression profile of miRNAs in EMVs from adults with SCI were significantly different than uninjured adults and were pathologic in nature. Expression of miR-126, miR-132, and miR-Let-7a were lower (~100-150%; p < .05), whereas miR-30a, miR-145, miR-155, and miR-216 were higher (~125-450%; p < .05) in EMVs from adults with SCI. Conclusion: This study is the first examination of EMV miRNA cargo in adults with SCI. The cargo signature of vascular-related miRNAs studied reflects a pathogenic EMV phenotype prone to induce inflammation, atherosclerosis, and vascular dysfunction. EMVs and their miRNA cargo represent a novel biomarker of vascular risk and a potential target for intervention to alleviate vascular-related disease after SCI.


Asunto(s)
Aterosclerosis , Micropartículas Derivadas de Células , MicroARNs , Traumatismos de la Médula Espinal , Humanos , Masculino , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Proyectos Piloto , Traumatismos de la Médula Espinal/metabolismo , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología
3.
Am J Physiol Heart Circ Physiol ; 323(6): H1311-H1322, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367686

RESUMEN

Cervical spinal cord injury (SCI) leads to autonomic cardiovascular dysfunction that underlies the three- to fourfold elevated risk of cardiovascular disease in this population. Reduced common carotid artery (CCA) dilatory responsiveness during the cold-pressor test (CPT) is associated with greater cardiovascular disease risk and progression. The cardiovascular and CCA responses to the CPT may provide insight into cardiovascular autonomic dysfunction and cardiovascular disease risk in individuals with cervical SCI. Here, we used CPT to perturb the autonomic nervous system in 14 individuals with cervical SCI and 12 uninjured controls, while measuring cardiovascular responses and CCA diameter. The CCA diameter responses were 55% impaired in those with SCI compared with uninjured controls (P = 0.019). The CCA flow, velocity, and shear response to CPT were reduced in SCI by 100% (P < 0.001), 113% (P = 0.001), and 125% (P = 0.002), respectively. The association between mean arterial pressure and CCA dilation observed in uninjured individuals (r = 0.54, P = 0.004) was absent in the SCI group (r = 0.22, P = 0.217). Steady-state systolic blood pressure (P = 0.020), heart rate (P = 0.003), and cardiac contractility (P < 0.001) were reduced in those with cervical SCI, whereas total peripheral resistance was increased compared with uninjured controls (P = 0.042). Relative cerebral blood velocity responses to CPT were increased in the SCI group and reduced in controls (middle cerebral artery, P = 0.010; posterior cerebral artery, P = 0.026). The CCA and cardiovascular responsiveness to CPT are impaired in those with cervical SCI.NEW & NOTEWORTHY This is the first study demonstrating that CCA responses during CPT are suppressed in SCI. Specifically, CCA diameter, flow, velocity, and shear rate were reduced. The relationship between changes in MAP and CCA dilatation in response to CPT was absent in individuals with SCI, despite similar cardiovascular activation between SCI and uninjured controls. These findings support the notion of elevated cardiovascular disease risk in SCI and that the cardiovascular responses to environmental stimuli are impaired.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedades Cardiovasculares , Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Arteria Carótida Común , Arterias Carótidas , Arteria Cerebral Media , Traumatismos de la Médula Espinal/complicaciones
4.
J Cereb Blood Flow Metab ; 42(6): 1120-1135, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35061562

RESUMEN

Voluntary asphyxia imposed by static apnea challenges blood-brain barrier (BBB) integrity in humans through transient extremes of hypertension, hypoxemia and hypercapnia. In the present study, ten ultra-elite breath-hold divers performed two maximal dry apneas preceded by normoxic normoventilation (NX: severe hypoxemia and hypercapnia) and hyperoxic hyperventilation (HX: absence of hypoxemia with exacerbating hypercapnia) with measurements obtained before and immediately after apnea. Transcerebral exchange of NVU proteins (ELISA, Single Molecule Array) were calculated as the product of global cerebral blood flow (gCBF, duplex ultrasound) and radial arterial to internal jugular venous concentration gradients. Apnea duration increased from 5 m 6 s in NX to 15 m 59 s in HX (P = <0.001) resulting in marked elevations in gCBF and venous S100B, glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase-L1 and total tau (all P < 0.05 vs. baseline). This culminated in net cerebral output reflecting mildly increased BBB permeability and increased neuronal-gliovascular reactivity that was more pronounced in NX due to more severe systemic and intracranial hypertension (P < 0.05 vs. HX). These findings identify the hemodynamic stress to which the apneic brain is exposed, highlighting the critical contribution of hypoxemia and not just hypercapnia to BBB disruption.


Asunto(s)
Apnea , Hipercapnia , Apnea/metabolismo , Barrera Hematoencefálica/metabolismo , Humanos , Hipoxia/metabolismo , Permeabilidad
5.
Appl Physiol Nutr Metab ; 47(3): 269-277, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34739759

RESUMEN

Individuals with cervical spinal cord injury (SCI) are at an increased risk for cardiovascular disease. Exercise is well-established for preventing cardiovascular disease; however, there are limited straightforward and safe exercise approaches for increasing the activity of the cardiorespiratory system after cervical SCI. The objective of this study was to investigate the cardiorespiratory response to passive leg cycling in people with cervical SCI. Beat-by-beat blood pressure, heart rate, and cerebral blood flow were measured before and throughout 10 minutes of cycling in 11 people with SCI. Femoral artery flow-mediated dilation was also assessed before and immediately after passive cycling. Safety was monitored throughout all study visits. Passive cycling elevated systolic blood pressure (5 ± 2 mm Hg), mean arterial pressure (5 ± 3 mm Hg), stroke volume (2.4 ± 0.8 mL), heart rate (2 ± 1 beats/min) and cardiac output (0.3 ± 0.07 L/min; all p < 0.05). Minute ventilation (0.67 ± 0.23 L/min), tidal volume (70 ± 30 mL) and end-tidal PO2 (2.6 ± 1.23 mm Hg) also increased (all p < 0.05). Endothelial function was improved immediately after exercise (1.62 ± 0.13%, p < 0.01). Passive cycling resulted in an incidence of autonomic dysreflexia. Therefore, passive leg cycling increased the activity of the cardiorespiratory system and improved endothelial function, indicating it may be a beneficial exercise intervention for the cardiovascular and respiratory systems in people with cervical SCI. Novelty: Passive leg cycling increases the activity of the cardiorespiratory system and improves markers of cardiovascular health in cervical SCI. Passive leg cycling exercise is an effective, low-cost, practical, alternative exercise modality for people with cervical SCI.


Asunto(s)
Pierna , Traumatismos de la Médula Espinal , Ciclismo , Ejercicio Físico/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Cuadriplejía , Traumatismos de la Médula Espinal/complicaciones
6.
Exp Physiol ; 105(9): 1540-1549, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32618374

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the characteristics of cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. What is the main finding and its importance? Acute alterations in CBF regulation at rest, including extra-cranial vasodilatation, reductions in shear patterns and elevations in intra-cranial blood velocity were observed at rest following a single SCUBA dive. These subtle changes in CBF regulation did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular coupling following a single SCUBA dive. ABSTRACT: Reductions in vascular function during a SCUBA dive - due to hyperoxia-induced oxidative stress, arterial and venous gas emboli and altered endothelial integrity - may also extend to the cerebrovasculature following return to the surface. This study aimed to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. FIO2 , 0.10) and hyperoxia (i.e. FIO2 , 1.0); and (3) neurovascular coupling (NVC; regional CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive (all P > 0.05); however, there were subtle changes in other cerebrovascular metrics post-dive, including reductions in ICA (-13 ± 8%, P = 0.003) and VA (-11 ± 14%, P = 0.021) shear rate, lower ICAv (-10 ± 9%, P = 0.008) and VAv (-9 ± 14%, P = 0.028), increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%, P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these changes did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyperbaria during longer, deeper, colder and/or repetitive SCUBA dives would provoke changes to the cerebrovasculature requires further investigation.


Asunto(s)
Circulación Cerebrovascular , Buceo/fisiología , Hiperoxia/fisiopatología , Hipoxia/fisiopatología , Acoplamiento Neurovascular , Adulto , Humanos , Masculino , Persona de Mediana Edad , Vasodilatación
7.
Clin Sci (Lond) ; 134(7): 777-789, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32219341

RESUMEN

People with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression. Eighteen young and middle-aged adults were studied: 10 uninjured (7M/3F; age: 39 ± 3 years) and 8 cervical level spinal cord injured (SCI; 7M/1F; 46 ± 4 years; cervical injury: C3: n=1; C5: n=4; C6: n=3). Circulating microvesicles were isolated, enumerated and collected from plasma by flow cytometry. Human umbilical vein endothelial cells (HUVECs) were cultured and treated with microvesicles from either the uninjured or SCI adults. Microvesicles from SCI adults did not affect cellular markers or mediators of inflammation and oxidative stress. However, microvesicles from the SCI adults significantly blunted eNOS activation, NO bioavailability and t-PA production. Intercellular expression of phosphorylated eNOS at Ser1177 and Thr495 sites, specifically, were ∼65% lower and ∼85% higher, respectively, in cells treated with microvesicles from SCI compared with uninjured adults. Decreased eNOS activity and NO production as well as impaired t-PA bioavailability renders the vascular endothelium highly susceptible to atherosclerosis and thrombosis. Thus, circulating microvesicles may contribute to the increased risk of vascular disease and thrombotic events associated with SCI.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Traumatismos de la Médula Espinal/sangre , Adulto , Estudios de Casos y Controles , Micropartículas Derivadas de Células/patología , Células Cultivadas , Citocinas/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Fosforilación , Traumatismos de la Médula Espinal/patología , Activador de Tejido Plasminógeno/metabolismo
8.
J Cereb Blood Flow Metab ; 40(3): 656-666, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30841780

RESUMEN

Intimate communication between neural and vascular structures is required to match neuronal metabolism to blood flow, a process termed neurovascular coupling. The number of laboratories assessing neurovascular coupling in humans is increasing due to clinical interest in disease states, and basic science interest in a non-anesthetized, non-craniotomized, unrestrained, in vivo model. However, there is a lack of knowledge regarding how best to characterize the neurovascular response. To address this knowledge gap, we have amassed a highly powered human neurovascular coupling dataset, and deployed a network-based approach to reveal the most powerful and consistent metrics for quantifying neurovascular coupling. Using dimensionality reduction, community-based clustering, and majority-voting of traditional metrics (e.g. peak response, time to peak) and non-traditional metrics (e.g. varying time windows, pulsatility), we have identified which of the existing metrics predominantly characterize the neurovascular coupling response, are stable within and across participants, and explain the vast majority of the variance within our dataset of over 300 trials. We then harnessed our empirical approach to generate powerful novel metrics of neurovascular coupling, termed iAmplitude, iRate, and iPulsatility, which increase sensitivity when capturing population differences. These metrics may be useful to optimally understand neurovascular coupling in health and disease.


Asunto(s)
Bases de Datos Factuales , Imagen por Resonancia Magnética , Acoplamiento Neurovascular , Femenino , Humanos , Masculino
9.
Can J Physiol Pharmacol ; 98(2): 124-130, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31505129

RESUMEN

The pathogenesis of predominantly neurological decompression sickness (DCS) is multifactorial. In SCUBA diving, besides gas bubbles, DCS has been linked to microparticle release, impaired endothelial function, and platelet activation. This study focused on vascular damage and its potential role in the genesis of DCS in breath-hold diving. Eleven breath-hold divers participated in a field study comprising eight deep breath-hold dives with short surface periods and repetitive breath-hold dives lasting for 6 h. Endothelium-dependent vasodilation of the brachial artery, via flow-mediated dilation (FMD), and the number of microparticles (MPs) were assessed before and after each protocol. All measures were analyzed by two-way within-subject ANOVA (2 × 2 ANOVA; factors: time and protocol). Absolute FMD was reduced following both diving protocols (p < 0.001), with no interaction (p = 0.288) or main effect of protocol (p = 0.151). There was a significant difference in the total number of circulating MPs between protocols (p = 0.007), where both increased post-dive (p = 0.012). The number of CD31+/CD41- and CD66b+ MP subtypes, although different between protocols (p < 0.001), also increased by 41.0% ± 56.6% (p = 0.050) and 60.0% ± 53.2% (p = 0.045) following deep and repetitive breath-hold dives, respectively. Both deep and repetitive breath-hold diving lead to endothelial dysfunction that may play an important role in the genesis of neurological DCS.


Asunto(s)
Vasos Sanguíneos/fisiopatología , Contencion de la Respiración , Buceo/efectos adversos , Micropartículas Derivadas de Células/metabolismo , Humanos , Factores de Tiempo , Vasodilatación
10.
Spinal Cord ; 57(11): 979-984, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31289366

RESUMEN

STUDY DESIGN: Experimental study. OBJECTIVES: Compromised cerebrovascular function likely contributes to elevated neurological risk in spinal cord injury (SCI). Passive heating offers many cardiovascular and neurological health benefits; therefore, we aimed to determine the effects of an acute bout of heating on cerebrovascular function in chronic SCI. METHODS: Persons with cervical SCI (n = 15) and uninjured controls (CON; n = 15) completed 60 min of lower limb hot water immersion (40 °C). Assessments of middle cerebral (MCA) and posterior cerebral artery (PCA) velocities, pulsatilities, and neurovascular coupling (NVC) were performed using transcranial Doppler ultrasound. Duplex ultrasonography was used to index cerebral blood flow via the internal carotid artery (ICA), and carotid-femoral pulse-wave velocity (PWV) was measured using tonometry. The NVC response was quantified as the peak hyperemic value during 30-s cycles of visual stimulation. RESULTS: Mean arterial pressure changed differentially with heating [mean (standard deviation); SCI: +6(14) mmHg, CON: -8(12) mmHg; P = 0.01]. There were no differences in any intracranial artery measures (all P > 0.05), except for small (~10%) increases in MCA conductance in CON after heating vs. SCI (interaction P = 0.006). Resting ICA flow was greater in SCI vs. CON (P = 0.03) but did not change with heating in either group (interaction P = 0.34). There were also no between-group differences in the NVC response (ΔPCA conductance) pre- [SCI: 29(19)% vs. CON: 30(9)%] or post-heating [SCI 30(9)% vs. 25(9)%; interaction P = 0.22]. CONCLUSIONS: Mild acute heating does not impair or improve cerebrovascular function in SCI or CON. Thus, further study of the effects of chronic heating interventions are warranted.


Asunto(s)
Circulación Cerebrovascular/fisiología , Vértebras Cervicales/diagnóstico por imagen , Hipertermia Inducida/métodos , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/fisiopatología , Adulto , Vértebras Cervicales/lesiones , Femenino , Humanos , Hipertermia Inducida/tendencias , Masculino , Persona de Mediana Edad , Traumatismos de la Médula Espinal/terapia
11.
J Appl Physiol (1985) ; 126(6): 1694-1700, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31070952

RESUMEN

Breath-hold divers (BHD) experience repeated bouts of severe hypoxia and hypercapnia with large increases in blood pressure. However, the impact of long-term breath-hold diving on cerebrovascular control remains poorly understood. The ability of cerebral blood vessels to respond rapidly to changes in blood pressure represents the property of dynamic autoregulation. The current investigation tested the hypothesis that breath-hold diving impairs dynamic autoregulation to a transient hypotensive stimulus. Seventeen BHD (3 women, 11 ± 9 yr of diving) and 15 healthy controls (2 women) completed two or three repeated sit-to-stand trials during spontaneous breathing and poikilocapnic conditions. Heart rate (HR), finger arterial blood pressure (BP), and cerebral blood flow velocity (BFV) from the right middle cerebral artery were measured continuously with three-lead electrocardiography, finger photoplethysmography, and transcranial Doppler ultrasonography, respectively. End-tidal carbon dioxide partial pressure was measured with a gas analyzer. Offline, an index of cerebrovascular resistance (CVRi) was calculated as the quotient of mean BP and BFV. The rate of the drop in CVRi relative to the change in BP provided the rate of regulation [RoR; (∆CVRi/∆T)/∆BP]. The BHD demonstrated slower RoR than controls (P ≤ 0.001, d = 1.4). Underlying the reduced RoR in BHD was a longer time to reach nadir CVRi compared with controls (P = 0.004, d = 1.1). In concert with the longer CVRi response, the time to reach peak BFV following standing was longer in BHD than controls (P = 0.01, d = 0.9). The data suggest impaired dynamic autoregulatory mechanisms to hypotension in BHD. NEW & NOTEWORTHY Impairments in dynamic cerebral autoregulation to hypotension are associated with breath-hold diving. Although weakened autoregulation was observed acutely in this group during apneic stress, we are the first to report on chronic adaptations in cerebral autoregulation. Impaired vasomotor responses underlie the reduced rate of regulation, wherein breath-hold divers demonstrate a prolonged dilatory response to transient hypotension. The slower cerebral vasodilation produces a longer perturbation in cerebral blood flow velocity, increasing the risk of cerebral ischemia.


Asunto(s)
Encéfalo/fisiología , Buceo/fisiología , Homeostasis/fisiología , Adulto , Apnea/metabolismo , Apnea/fisiopatología , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Encéfalo/metabolismo , Contencion de la Respiración , Dióxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Electrocardiografía/métodos , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Arteria Cerebral Media/metabolismo , Arteria Cerebral Media/fisiología , Ultrasonografía Doppler Transcraneal/métodos , Vasodilatación/fisiología
12.
Am J Physiol Heart Circ Physiol ; 316(3): H722-H733, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30575438

RESUMEN

Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.


Asunto(s)
Selectina E/sangre , Endotelio Vascular/fisiopatología , Respuesta al Choque Térmico , Traumatismos de la Médula Espinal/fisiopatología , Adulto , Arterias/diagnóstico por imagen , Biomarcadores/sangre , Vértebras Cervicales/lesiones , Endotelio Vascular/diagnóstico por imagen , Femenino , Hemorreología , Humanos , Hipertermia Inducida , Masculino , Microvasos/diagnóstico por imagen , Persona de Mediana Edad
13.
J Neurotrauma ; 36(9): 1487-1490, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30458117

RESUMEN

The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) likely plays an important role in the prevention of stroke, which is three- to fourfold more common after spinal cord injury (SCI). Although the directional relationship between BP and cerebral blood flow (CBF) has traditionally been thought to travel solely from BP to CBF, a Cushing-like mechanism functioning in the inverse direction, in which changes in CBF influence BP, has recently been revealed using Granger causality analysis. Although both CBF buffering of BP and the Cushing-like mechanism are influenced by the sympathetic nervous system, we do not understand the impact of disruption of descending sympathetic pathways within the spinal cord, caused by cervical SCI on these regulatory systems. We hypothesized that people with cervical SCI would have greater BP to CBF transmission, as well as a reduced Cushing-like mechanism. The directional relationships between mean arterial BP (MAP; Finometer® PRO) and middle cerebral artery blood velocity (MCAv; transcranial Doppler) were assessed at rest in 14 cervical SCI subjects and 16 uninjured individuals using Granger causality analysis, while also accounting for end-tidal CO2 tension. Those with SCI exhibited 66% increased forward MAP→MCAv information transmission as compared with the uninjured group (p = 0.0003), indicating reduced cerebrovascular buffering of BP, and did not have a predominant backward Cushing-like MCAv→MAP phenotype. These results indicate that both forward and backward communication between BP and CBF are influenced by SCI, which may be associated with impaired cerebrovascular BP buffering after SCI as well as widespread BP instability.


Asunto(s)
Presión Sanguínea/fisiología , Circulación Cerebrovascular/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Velocidad del Flujo Sanguíneo/fisiología , Femenino , Humanos , Masculino
14.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R759-R767, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29995458

RESUMEN

We examined if the diving-induced vascular changes in the peripheral and cerebral circulation could be prevented by oral antioxidant supplementation. Fourteen divers performed a single scuba dive to eighteen meter sea water for 47 min. Twelve of the divers participated in a follow-up study involving breathing 60% of oxygen at ambient pressure for 47 min. Before both studies, participants ingested vitamin C (2 g/day) or a placebo capsule for 6 days. After a 2-wk washout, the study was repeated with the different condition. Endothelium-dependent vasodilator function of the brachial artery was assessed pre- and postintervention using the flow-mediated dilation (FMD) technique. Transcranial Doppler ultrasound was used to measure intracranial blood velocities pre- and 90 min postintervention. FMD was reduced by ∼32.8% and ∼21.2% postdive in the placebo and vitamin C trial and posthyperoxic condition in the placebo trial by ∼28.2% ( P < 0.05). This reduction in FMD was attenuated by ∼10% following vitamin C supplementation in the hyperoxic study ( P > 0.05). Elevations in intracranial blood velocities 30 min after surfacing from diving were reduced in the vitamin C study compared with the placebo trial ( P < 0.05). O2 breathing had no postintervention effects on intracranial velocities ( P > 0.05). Prophylactic ingestion of vitamin C effectively abrogated peripheral vascular dysfunction following exposure to 60% O2 but did not abolish the postdive decrease in FMD. Transient elevations of intracranial velocities postdive were reduced by vitamin C. These findings highlight the differential influence of vitamin C on peripheral and cerebral circulations following scuba diving, which are only partly mediated via hyperoxia.


Asunto(s)
Antioxidantes/administración & dosificación , Ácido Ascórbico/administración & dosificación , Arteria Braquial/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Buceo , Hiperoxia/fisiopatología , Vasodilatación/efectos de los fármacos , Administración Oral , Adulto , Velocidad del Flujo Sanguíneo , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/fisiopatología , Croacia , Método Doble Ciego , Ecocardiografía , Humanos , Hiperoxia/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Factores de Tiempo , Ultrasonografía Doppler de Pulso , Ultrasonografía Doppler Transcraneal/métodos
15.
Exp Physiol ; 103(8): 1170-1177, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29978513

RESUMEN

NEW FINDINGS: What is the central question of this study? How does oxygen therapy influence cerebral blood flow, cerebral oxygen delivery and neurovascular function in chronic obstructive pulmonary disease patients? What is the main finding and its importance? Oxygen therapy improves cerebral oxygen delivery and neurovascular function in chronic obstructive pulmonary disease patients. This improvement in cerebral oxygen delivery and neurovascular function might provide a physiological link between oxygen therapy and a reduced risk of cerebrovascular disease (e.g. stroke, mild cognitive impairment and dementia) in chronic obstructive pulmonary disease. ABSTRACT: We investigated the role of hypoxaemia in cerebral blood flow (CBF), oxygen delivery (CDO2 ) and neurovascular coupling (coupling of CBF to neural activity; NVC) in hypoxaemic chronic obstructive pulmonary disease (COPD) patients (n = 14). Resting CBF (duplex ultrasound), peripheral oxyhaemoglobin saturation (SpO2; pulse-oximetry) and NVC (transcranial Doppler) were assessed before and after a 20 min wash-in of supplemental oxygen (∼3 l min-1 ). The peripheral oxyhaemoglobin saturation increased from 91.0 ± 3.3 to 97.4 ± 3.0% (P < 0.01), whereas CBF was unaltered (593.0 ± 162.8 versus 590.1 ± 138.5 ml min-1 ; P = 0.91) with supplemental O2 . In contrast, both CDO2 (98.1 ± 25.7 versus 108.7 ± 28.4 ml dl-1 ; P = 0.02) and NVC were improved. Specifically, the posterior cerebral artery cerebrovascular conductance was increased to a greater extent after O2 normalization (+40%, from 20.4 ± 9.9 to 28.0 ± 10.4% increase in conductance; P = 0.04), whereas the posterior cerebral artery cerebrovascular resistance decreased to a greater extent during O2 normalization (+22%, from -16.7 ± 7.3 to -21.4 ± 6.6% decrease in resistance; P = 0.04). The cerebral vasculature of COPD patients appears insensitive to oxygen, because CBF was unaltered in response to O2 supplementation leading to improved CDO2 . In patients, the improvements in CDO2 and neurovascular function with supplemental O2 may underlie the cognitive benefits associated with O2 therapy.


Asunto(s)
Circulación Cerebrovascular/fisiología , Hipoxia/terapia , Oxígeno/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/terapia , Anciano , Femenino , Humanos , Hipoxia/complicaciones , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Oximetría , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Resultado del Tratamiento
16.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R1-R27, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488785

RESUMEN

Molecular oxygen (O2) is a vital element in human survival and plays a major role in a diverse range of biological and physiological processes. Although normobaric hyperoxia can increase arterial oxygen content ([Formula: see text]), it also causes vasoconstriction and hence reduces O2 delivery in various vascular beds, including the heart, skeletal muscle, and brain. Thus, a seemingly paradoxical situation exists in which the administration of oxygen may place tissues at increased risk of hypoxic stress. Nevertheless, with various degrees of effectiveness, and not without consequences, supplemental oxygen is used clinically in an attempt to correct tissue hypoxia (e.g., brain ischemia, traumatic brain injury, carbon monoxide poisoning, etc.) and chronic hypoxemia (e.g., severe COPD, etc.) and to help with wound healing, necrosis, or reperfusion injuries (e.g., compromised grafts). Hyperoxia has also been used liberally by athletes in a belief that it offers performance-enhancing benefits; such benefits also extend to hypoxemic patients both at rest and during rehabilitation. This review aims to provide a comprehensive overview of the effects of hyperoxia in humans from the "bench to bedside." The first section will focus on the basic physiological principles of partial pressure of arterial O2, [Formula: see text], and barometric pressure and how these changes lead to variation in regional O2 delivery. This review provides an overview of the evidence for and against the use of hyperoxia as an aid to enhance physical performance. The final section addresses pathophysiological concepts, clinical studies, and implications for therapy. The potential of O2 toxicity and future research directions are also considered.


Asunto(s)
Rendimiento Atlético , Hemodinámica , Hiperoxia/fisiopatología , Pulmón/fisiopatología , Oxígeno/administración & dosificación , Ventilación Pulmonar , Administración por Inhalación , Animales , Biomarcadores/sangre , Tolerancia al Ejercicio , Humanos , Hiperoxia/sangre , Oxígeno/efectos adversos , Oxígeno/sangre , Presión Parcial , Flujo Sanguíneo Regional , Medición de Riesgo , Vasoconstricción
17.
Am J Physiol Heart Circ Physiol ; 314(5): H1108-H1114, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29600896

RESUMEN

The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) is crucial to prevent stroke, the incidence of which is three- to fourfold elevated after spinal cord injury (SCI). Disruption of descending sympathetic pathways within the spinal cord due to cervical SCI may result in impaired cerebrovascular buffering. Only linear analyses of cerebrovascular buffering of BP, such as transfer function, have been used in SCI research. This approach does not account for inherent nonlinearity and nonstationarity components of cerebrovascular regulation, often depends on perturbations of BP to increase the statistical power, and does not account for the influence of arterial CO2 tension. Here, we used a nonlinear and nonstationary analysis approach termed wavelet decomposition analysis (WDA), which recently identified novel sympathetic influences on cerebrovascular buffering of BP occurring in the ultra-low-frequency range (ULF; 0.02-0.03Hz). WDA does not require BP perturbations and can account for influences of CO2 tension. Supine resting beat-by-beat BP (Finometer), middle cerebral artery blood velocity (transcranial Doppler), and end-tidal CO2 tension were recorded in cervical SCI ( n = 14) and uninjured ( n = 16) individuals. WDA revealed that cerebral blood flow more closely follows changes in BP in the ULF range ( P = 0.0021, Cohen's d = 0.89), which may be interpreted as an impairment in cerebrovascular buffering of BP. This persisted after accounting for CO2. Transfer function metrics were not different in the ULF range, but phase was reduced at 0.07-0.2 Hz ( P = 0.03, Cohen's d = 0.31). Sympathetically mediated cerebrovascular buffering of BP is impaired after SCI, and WDA is a powerful strategy for evaluating cerebrovascular buffering in clinical populations.


Asunto(s)
Presión Arterial , Arteria Braquial/fisiopatología , Circulación Cerebrovascular , Arteria Cerebral Media/fisiopatología , Modelos Cardiovasculares , Traumatismos de la Médula Espinal/fisiopatología , Ultrasonografía Doppler Transcraneal/métodos , Análisis de Ondículas , Adaptación Fisiológica , Adulto , Velocidad del Flujo Sanguíneo , Femenino , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Arteria Cerebral Media/diagnóstico por imagen , Arteria Cerebral Media/inervación , Valor Predictivo de las Pruebas , Traumatismos de la Médula Espinal/diagnóstico , Sistema Nervioso Simpático/fisiopatología
18.
FASEB J ; 32(4): 2305-2314, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29191963

RESUMEN

Static apnea provides a unique model that combines transient hypertension, hypercapnia, and severe hypoxemia. With apnea durations exceeding 5 min, the purpose of the present study was to determine how that affects cerebral free-radical formation and the corresponding implications for brain structure and function. Measurements were obtained before and following a maximal apnea in 14 divers with transcerebral exchange kinetics, measured as the product of global cerebral blood flow (duplex ultrasound) and radial arterial to internal jugular venous concentration differences ( a-vD). Apnea increased the systemic (arterial) and, to a greater extent, the regional (jugular venous) concentration of the ascorbate free radical, resulting in a shift from net cerebral uptake to output ( P < 0.05). Peroxidation (lipid hydroperoxides, LDL oxidation), NO bioactivity, and S100ß were correspondingly enhanced ( P < 0.05), the latter interpreted as minor and not a pathologic disruption of the blood-brain barrier. However, those changes were insufficient to cause neuronal-parenchymal damage confirmed by the lack of change in the a-vD of neuron-specific enolase and human myelin basic protein ( P > 0.05). Collectively, these observations suggest that increased cerebral oxidative stress following prolonged apnea in trained divers may reflect a functional physiologic response, rather than a purely maladaptive phenomenon.-Bain, A. R., Ainslie, P. N., Hoiland, R. L., Barak, O. F., Drvis, I., Stembridge, M., MacLeod, D. M., McEneny, J., Stacey, B. S., Tuaillon, E., Marchi, N., De Maudave, A. F., Dujic, Z., MacLeod, D. B., Bailey, D. M. Competitive apnea and its effect on the human brain: focus on the redox regulation of blood-brain barrier permeability and neuronal-parenchymal integrity.


Asunto(s)
Apnea/metabolismo , Barrera Hematoencefálica/metabolismo , Estrés Oxidativo , Adulto , Apnea/sangre , Permeabilidad Capilar , Circulación Cerebrovascular , Femenino , Radicales Libres/metabolismo , Humanos , Peroxidación de Lípido , Masculino , Proteína Básica de Mielina/metabolismo , Fosfopiruvato Hidratasa/metabolismo
19.
Sci Rep ; 7(1): 16929, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29209035

RESUMEN

The aims of this study were: (1) to test whether oscillatory shear stress further exacerbates endothelial dysfunction in patients with moderate-severe COPD, and (2) to test whether low flow oxygen administration improves endothelial function and is protective against oscillatory shear stress-induced endothelial dysfunction in patients with moderate-severe COPD. In 17 patients and 10 age-matched non-smoking control subjects we examined brachial artery flow-mediated dilation (FMD) and circulating microparticles before and after 20 minutes of experimentally-induced oscillatory shear stress. COPD patients performed this intervention a second time following a 20-minute wash in period of low flow supplemental oxygen to normalize arterial oxygen saturation. COPD patients had ~six-fold greater baseline retrograde shear rate (P < 0.05) and lower FMD (P < 0.05). The oscillatory shear stress intervention induced significant decreases in brachial artery FMD of all groups (P < 0.05). Oscillatory shear stress elevated circulating markers of endothelial cell apoptosis (CD31+/CD41b- microparticles) in COPD patients, but not age-matched controls. Supplemental oxygen administration abrogated the oscillatory shear stress-induced increase in CD31+/CD41b- microparticles, and improved FMD after accounting for the shear stress stimulus. We have demonstrated that acutely disturbed blood flow with increased retrograde shear stress further deteriorates the already impaired endothelial function with attendant endothelial apoptosis in patients with moderate-severe COPD.


Asunto(s)
Endotelio Vascular/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Flujo Sanguíneo Regional/fisiología , Anciano , Arteria Braquial , Estudios de Casos y Controles , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Dilatación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/administración & dosificación , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Estrés Mecánico , Vasodilatación
20.
J Neurophysiol ; 118(5): 2914-2924, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835525

RESUMEN

This study investigated the influence of ventilation on sympathetic action potential (AP) discharge patterns during varying levels of high chemoreflex stress. In seven trained breath-hold divers (age 33 ± 12 yr), we measured muscle sympathetic nerve activity (MSNA) at baseline, during preparatory rebreathing (RBR), and during 1) functional residual capacity apnea (FRCApnea) and 2) continued RBR. Data from RBR were analyzed at matched (i.e., to FRCApnea) hemoglobin saturation (HbSat) levels (RBRMatched) or more severe levels (RBREnd). A third protocol compared alternating periods (30 s) of FRC and RBR (FRC-RBRALT). Subjects continued each protocol until 85% volitional tolerance. AP patterns in MSNA (i.e., providing the true neural content of each sympathetic burst) were studied using wavelet-based methodology. First, for similar levels of chemoreflex stress (both HbSat: 71 ± 6%; P = NS), RBRMatched was associated with reduced AP frequency and APs per burst compared with FRCApnea (both P < 0.001). When APs were binned according to peak-to-peak amplitude (i.e., into clusters), total AP clusters increased during FRCApnea (+10 ± 2; P < 0.001) but not during RBRMatched (+1 ± 2; P = NS). Second, despite more severe chemoreflex stress during RBREnd (HbSat: 56 ± 13 vs. 71 ± 6%; P < 0.001), RBREnd was associated with a restrained increase in the APs per burst (FRCApnea: +18 ± 7; RBREnd: +11 ± 5) and total AP clusters (FRCApnea: +10 ± 2; RBREnd: +6 ± 4) (both P < 0.01). During FRC-RBRALT, all periods of FRC elicited sympathetic AP recruitment (all P < 0.001), whereas all periods of RBR were associated with complete withdrawal of AP recruitment (all P = NS). Presently, we demonstrate that ventilation per se restrains and/or inhibits sympathetic axonal recruitment during high, and even extreme, chemoreflex stress.NEW & NOTEWORTHY The current study demonstrates that the sympathetic neural recruitment patterns observed during chemoreflex activation induced by rebreathing or apnea are restrained and/or inhibited by the act of ventilation per se, despite similar, or even greater, levels of severe chemoreflex stress. Therefore, ventilation modulates not only the timing of sympathetic bursts but also the within-burst axonal recruitment normally observed during progressive chemoreflex stress.


Asunto(s)
Potenciales de Acción , Apnea/fisiopatología , Ventilación Pulmonar , Reclutamiento Neurofisiológico , Reflejo , Estrés Fisiológico , Sistema Nervioso Simpático/fisiología , Adulto , Femenino , Hemoglobinas/metabolismo , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...