Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 158: 114172, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916399

RESUMEN

Nanotechnology encompasses a wide range of devices derived from biology, engineering, chemistry, and physics, and this scientific field is composed of great collaboration among researchers from several fields. It has diverse implications notably smart sensing technologies, effective disease diagnosis, and sometimes used in treatment. In medical science, the implications of nanotechnology include the development of elements and devices that interact with the body at subcellular (i.e., molecular) levels exhibiting high sensitivity and specificity. There is a plethora of new chances for medical science and disease treatment to be discovered and exploited in the rapidly developing field of nanotechnology. In different sectors, nanomaterials are used just because of their special characteristics. Their large surface area of them enables higher reactivity with greater efficiency. Furthermore, special surface chemistry is displayed by nanomaterials which compare to conventional materials and facilitate the nanomaterials to decrease pollutants efficiently. Recently, nanomaterials are used in some countries to reduce the levels of contaminants in water, air, and soil. Moreover, nanomaterials are used in the cosmetics and medical industry, and it develops the drug discovery (DD) system. Among a huge number of nanomaterials, Cu, Ag, TiO2, ZnO, Fe3O4, and carbon nanotubes (CNTs) are extensively used in different industries for various purposes. This extensive review study has introduced the major scientific and technical features of nanotechnology, as well as some possible clinical applications and positive feedback in environmental waste management and drug delivery systems.


Asunto(s)
Contaminantes Ambientales , Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/química , Nanotecnología , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos
2.
Front Oncol ; 12: 883805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924174

RESUMEN

Vaginal cancer is a rare and uncommon disease that is rarely discussed. Although vaginal cancer traditionally occurs in older postmenopausal women, the incidence of high-risk human papillomavirus (HPV)-induced cancers is increasing in younger women. Cervical cancer cells contain high-risk human papillomavirus (HPV) E6 and E7 proteins and inhibiting HPV gene expression leads the cells to stop proliferating and enter senescence. As E6, and E7 protein promoted the carcinogenesis mechanism, and here not only regulate the cellular degradation of P53, and pRb but also enhances the cell proliferation along with E6 protein targets the p53 for breakdown and subsequently promote the apoptotic cell death, and DNA repair inhibition, that is indispensable to the continue the lifecycle of the HPV. As a synchronous or metachronous tumor, vaginal cancer is frequently found in combination with cervical cancer. It is uncertain what causes invasive female vaginal organ cancer. HPV type 16 is the most often isolated HPV type in female vaginal organ cancers. Due to cancer's rarity, case studies have provided the majority of etiologic findings. Many findings demonstrate that ring pessaries, chronic vaginitis, sexual behavior, birth trauma, obesity, vaginal chemical exposure, and viruses are all risk factors. Because of insufficient understanding and disease findings, we are trying to find the disease's mechanism with the available data. We also address different risk factors, therapy at various stages, diagnosis, and management of vaginal cancer in this review.

3.
Front Oncol ; 12: 899009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719997

RESUMEN

Salvicine is a new diterpenoid quinone substance from a natural source, specifically in a Chinese herb. It has powerful growth-controlling abilities against a broad range of human cancer cells in both in vitro and in vivo environments. A significant inhibitory effect of salvicine on multidrug-resistant (MDR) cells has also been discovered. Several research studies have examined the activities of salvicine on topoisomerase II (Topo II) by inducing reactive oxygen species (ROS) signaling. As opposed to the well-known Topo II toxin etoposide, salvicine mostly decreases the catalytic activity with a negligible DNA breakage effect, as revealed by several enzymatic experiments. Interestingly, salvicine dramatically reduces lung metastatic formation in the MDA-MB-435 orthotopic lung cancer cell line. Recent investigations have established that salvicine is a new non-intercalative Topo II toxin by interacting with the ATPase domains, increasing DNA-Topo II interaction, and suppressing DNA relegation and ATP hydrolysis. In addition, investigations have revealed that salvicine-induced ROS play a critical role in the anticancer-mediated signaling pathway, involving Topo II suppression, DNA damage, overcoming multidrug resistance, and tumor cell adhesion suppression, among other things. In the current study, we demonstrate the role of salvicine in regulating the ROS signaling pathway and the DNA damage response (DDR) in suppressing the progression of cancer cells. We depict the mechanism of action of salvicine in suppressing the DNA-Topo II complex through ROS induction along with a brief discussion of the anticancer perspective of salvicine.

4.
Infect Disord Drug Targets ; 22(5): e050122199976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986776

RESUMEN

Coronavirus disease 2019 (COVID-19), which is a highly contagious viral illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a catastrophic effect on the world's demographics, resulting in more than 3.8 million deaths worldwide and establishing itself as the most serious global health crisis since the 1918 influenza pandemic. Several questions remain unanswered regarding the effects of COVID-19 disease during pregnancy. Although most infections are mild in high-risk populations, the severe disease frequently leads to intubation, intensive care unit admission, and, in some cases, death. Hormonal and physiological changes in the immune and respiratory systems, cardiovascular function, and coagulation may affect the progression of COVID-19 disease in pregnancy. However, the consequences of coronavirus infection on implantation, fetal growth and development, labor, and newborn health have yet to be determined, and, consequently, a coordinated global effort is needed in this respect. Principles of management concerning COVID-19 in pregnancy include early isolation, aggressive infection control procedures, oxygen therapy, avoidance of fluid overload, consideration of empiric antibiotics (secondary to bacterial infection risk), laboratory testing for the virus and co-infection, fetal and uterine contraction monitoring, prevention, and / or treatment of thromboembolism early mechanical ventilation for progressive respiratory failure, individualized delivery planning, and a team-based approach with multispecialty consultations. This review focuses on COVID-19 during pregnancy, its management, and the area where further investigations are needed to reduce the risk to mothers and their newborns.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Femenino , Salud Global , Humanos , Recién Nacido , Pandemias/prevención & control , Embarazo , SARS-CoV-2
5.
Molecules ; 25(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872217

RESUMEN

A pandemic caused by the novel coronavirus (SARS-CoV-2 or COVID-19) began in December 2019 in Wuhan, China, and the number of newly reported cases continues to increase. More than 19.7 million cases have been reported globally and about 728,000 have died as of this writing (10 August 2020). Recently, it has been confirmed that the SARS-CoV-2 main protease (Mpro) enzyme is responsible not only for viral reproduction but also impedes host immune responses. The Mpro provides a highly favorable pharmacological target for the discovery and design of inhibitors. Currently, no specific therapies are available, and investigations into the treatment of COVID-19 are lacking. Therefore, herein, we analyzed the bioactive phytocompounds isolated by gas chromatography-mass spectroscopy (GC-MS) from Tinospora crispa as potential COVID-19 Mpro inhibitors, using molecular docking study. Our analyses unveiled that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules, with three of them exerting biological activity and warranting further optimization and drug development to combat COVID-19.


Asunto(s)
Antivirales/química , Betacoronavirus/química , Fitoquímicos/química , Inhibidores de Proteasas/química , Tinospora/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/clasificación , Antivirales/aislamiento & purificación , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , COVID-19 , Dominio Catalítico , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Descubrimiento de Drogas , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Humanos , Cinética , Simulación del Acoplamiento Molecular , Pandemias , Fitoquímicos/clasificación , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Neumonía Viral/tratamiento farmacológico , Inhibidores de Proteasas/clasificación , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , SARS-CoV-2 , Especificidad por Sustrato , Termodinámica , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...