Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 269: 116308, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503166

RESUMEN

Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 µM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 µM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Subtilisina/metabolismo , Secuencia de Aminoácidos , Plasmodium falciparum/metabolismo , Péptidos , Malaria Falciparum/parasitología , Serina Proteasas/metabolismo , Relación Estructura-Actividad , Antimaláricos/farmacología , Antimaláricos/química , Proteínas Protozoarias , Mamíferos/metabolismo
2.
mBio ; 15(3): e0019824, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38386597

RESUMEN

Malaria symptoms are associated with the asexual multiplication of Plasmodium falciparum within human red blood cells (RBCs) and fever peaks coincide with the egress of daughter merozoites following the rupture of the parasitophorous vacuole (PV) and the RBC membranes. Over the last two decades, it has emerged that the release of competent merozoites is tightly regulated by a complex cascade of events, including the unusual multi-step activation mechanism of the pivotal subtilisin-like protease 1 (Sub1) that takes place in three different cellular compartments and remains poorly understood. Following an initial auto-maturation in the endoplasmic reticulum (ER) between its pro- and catalytic domains, the Sub1 prodomain (PD) undergoes further cleavages by the parasite aspartic protease plasmepsin X (PmX) within acidic secretory organelles that ultimately lead to full Sub1 activation upon discharge into the PV. Here, we report the crystal structure of full-length P. falciparum Sub1 (PfS1FL) and demonstrate, through structural, biochemical, and biophysical studies, that the atypical Plasmodium-specific Sub1 PD directly promotes the assembly of inactive enzyme homodimers at acidic pH, whereas Sub1 is primarily monomeric at neutral pH. Our results shed new light into the finely tuned Sub1 spatiotemporal activation during secretion, explaining how PmX processing and full activation of Sub1 can occur in different cellular compartments, and uncover a robust mechanism of pH-dependent subtilisin autoinhibition that plays a key role in P. falciparum merozoites egress from infected host cells.IMPORTANCEMalaria fever spikes are due to the rupture of infected erythrocytes, allowing the egress of Plasmodium sp. merozoites and further parasite propagation. This fleeting tightly regulated event involves a cascade of enzymes, culminating with the complex activation of the subtilisin-like protease 1, Sub1. Differently than other subtilisins, Sub1 activation strictly depends upon the processing by a parasite aspartic protease within acidic merozoite secretory organelles. However, Sub1 biological activity is required in the pH neutral parasitophorous vacuole, to prime effectors involved in the rupture of the vacuole and erythrocytic membranes. Here, we show that the unusual, parasite-specific Sub1 prodomain is directly responsible for its acidic-dependent dimerization and autoinhibition, required for protein secretion, before its full activation at neutral pH in a monomeric form. pH-dependent Sub1 dimerization defines a novel, essential regulatory element involved in the finely tuned spatiotemporal activation of the egress of competent Plasmodium merozoites.


Asunto(s)
Malaria Falciparum , Plasmodium , Animales , Humanos , Subtilisina/metabolismo , Merozoítos/fisiología , Dimerización , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Eritrocitos/parasitología , Concentración de Iones de Hidrógeno
3.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 721-734, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37428845

RESUMEN

The constant selection and propagation of multi-resistant Plasmodium sp. parasites require the identification of new antimalarial candidates involved in as-yet untargeted metabolic pathways. Subtilisin-like protease 1 (SUB1) belongs to a new generation of drug targets because it plays a crucial role during egress of the parasite from infected host cells at different stages of its life cycle. SUB1 is characterized by an unusual pro-region that tightly interacts with its cognate catalytic domain, thus precluding 3D structural analysis of enzyme-inhibitor complexes. In the present study, to overcome this limitation, stringent ionic conditions and controlled proteolysis of recombinant full-length P. vivax SUB1 were used to obtain crystals of an active and stable catalytic domain (PvS1Cat) without a pro-region. High-resolution 3D structures of PvS1Cat, alone and in complex with an α-ketoamide substrate-derived inhibitor (MAM-117), showed that, as expected, the catalytic serine of SUB1 formed a covalent bond with the α-keto group of the inhibitor. A network of hydrogen bonds and hydrophobic interactions stabilized the complex, including at the P1' and P2' positions of the inhibitor, although P' residues are usually less important in defining the substrate specificity of subtilisins. Moreover, when associated with a substrate-derived peptidomimetic inhibitor, the catalytic groove of SUB1 underwent significant structural changes, particularly in its S4 pocket. These findings pave the way for future strategies for the design of optimized SUB1-specific inhibitors that may define a novel class of antimalarial candidates.


Asunto(s)
Antimaláricos , Subtilisina , Plasmodium vivax , Antimaláricos/farmacología , Antimaláricos/química , Inhibidores Enzimáticos/farmacología , Proteínas Protozoarias/química
4.
J Antimicrob Chemother ; 78(2): 411-417, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508338

RESUMEN

BACKGROUND: In early 2016, in Preah Vihear, Northern Cambodia, artesunate/mefloquine was used to cope with dihydroartemisinin/piperaquine-resistant Plasmodium falciparum parasites. Following this policy, P. falciparum strains harbouring molecular markers associated with artemisinin, piperaquine and mefloquine resistance have emerged. However, the lack of a viable alternative led Cambodia to adopt artesunate/mefloquine countrywide, raising concerns about a surge of triple-resistant P. falciparum strains. OBJECTIVES: To assess the prevalence of triple-resistant parasites after artesunate/mefloquine implementation countrywide in Cambodia and to characterize their phenotype. METHODS: For this multicentric study, 846 samples were collected from 2016 to 2019. Genotyping of molecular markers associated with artemisinin, piperaquine and mefloquine resistance was coupled with phenotypic analyses. RESULTS: Only four triple-resistant P. falciparum isolates (0.47%) were identified during the study period. These parasites combined the pfk13 polymorphism with pfmdr1 amplification, pfpm2 amplification and/or pfcrt mutations. They showed significantly higher tolerance to artemisinin, piperaquine and mefloquine and also to the mefloquine and piperaquine combination. CONCLUSIONS: The use of artesunate/mefloquine countrywide in Cambodia has not led to a massive increase of triple-resistant P. falciparum parasites. However, these parasites circulate in the population, and exhibit clear resistance to piperaquine, mefloquine and their combination in vitro. This study demonstrates that P. falciparum can adapt to more complex drug associations, which should be considered in future therapeutic designs.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Quinolinas , Humanos , Mefloquina/farmacología , Mefloquina/uso terapéutico , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artesunato , Cambodia/epidemiología , Prevalencia , Artemisininas/farmacología , Artemisininas/uso terapéutico , Quinolinas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética
5.
Cell Rep ; 39(11): 110923, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705035

RESUMEN

The uptake and digestion of host hemoglobin by malaria parasites during blood-stage growth leads to significant oxidative damage of membrane lipids. Repair of lipid peroxidation damage is crucial for parasite survival. Here, we demonstrate that Plasmodium falciparum imports a host antioxidant enzyme, peroxiredoxin 6 (PRDX6), during hemoglobin uptake from the red blood cell cytosol. PRDX6 is a lipid-peroxidation repair enzyme with phospholipase A2 (PLA2) activity. Inhibition of PRDX6 with a PLA2 inhibitor, Darapladib, increases lipid-peroxidation damage in the parasite and disrupts transport of hemoglobin-containing vesicles to the food vacuole, causing parasite death. Furthermore, inhibition of PRDX6 synergistically reduces the survival of artemisinin-resistant parasites following co-treatment of parasite cultures with artemisinin and Darapladib. Thus, PRDX6 is a host-derived drug target for development of antimalarial drugs that could help overcome artemisinin resistance.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Peroxiredoxina VI , Animales , Antimaláricos/farmacología , Artemisininas/metabolismo , Artemisininas/farmacología , Benzaldehídos/farmacología , Resistencia a Medicamentos , Hemoglobinas/metabolismo , Humanos , Lípidos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Ratones , Oximas/farmacología , Peroxiredoxina VI/inmunología , Peroxiredoxina VI/metabolismo , Plasmodium falciparum
6.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34857648

RESUMEN

Artemisinin-based combination therapies (ACT) are the frontline treatments against malaria worldwide. Recently the use of traditional infusions from Artemisia annua (from which artemisinin is obtained) or Artemisia afra (lacking artemisinin) has been controversially advocated. Such unregulated plant-based remedies are strongly discouraged as they might constitute sub-optimal therapies and promote drug resistance. Here, we conducted the first comparative study of the anti-malarial effects of both plant infusions in vitro against the asexual erythrocytic stages of Plasmodium falciparum and the pre-erythrocytic (i.e., liver) stages of various Plasmodium species. Low concentrations of either infusion accounted for significant inhibitory activities across every parasite species and stage studied. We show that these antiplasmodial effects were essentially artemisinin-independent and were additionally monitored by observations of the parasite apicoplast and mitochondrion. In particular, the infusions significantly incapacitated sporozoites, and for Plasmodium vivax and P. cynomolgi, disrupted the hypnozoites. This provides the first indication that compounds other than 8-aminoquinolines could be effective antimalarials against relapsing parasites. These observations advocate for further screening to uncover urgently needed novel antimalarial lead compounds.


Asunto(s)
Antimaláricos/farmacología , Artemisia/química , Artemisininas/farmacología , Extractos Vegetales/farmacología , Plasmodium/efectos de los fármacos , Antimaláricos/química , Artemisininas/química , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Hepatocitos/efectos de los fármacos , Hepatocitos/parasitología , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/tratamiento farmacológico , Malaria/parasitología , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/química , Plasmodium/crecimiento & desarrollo
7.
J Antimicrob Chemother ; 74(11): 3240-3244, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518407

RESUMEN

BACKGROUND: Cambodia is the epicentre of resistance emergence for virtually all antimalarial drugs. Selection and spread of parasites resistant to artemisinin-based combination therapy (ACT) is a major threat for malaria elimination, hence the need to renew the pool of effective treatments. OBJECTIVES: To determine whether ACT resistance haplotypes could have an effect on ferroquine in vitro antimalarial activity. METHODS: In vitro susceptibility to ferroquine was measured for 80 isolates from Cambodia characterized for their molecular resistance profile to artemisinin, piperaquine and mefloquine. RESULTS: Among the 80 isolates tested, the overall median (IQR) IC50 of ferroquine was 10.9 nM (8.7-18.3). The ferroquine median (IQR) IC50 was 8.9 nM (8.1-11.8) for Pfk13 WT parasites and was 12.9 nM (9.5-20.0) for Pfk13 C580Y parasites with no amplification of Pfpm2 and Pfmdr1 genes. The median (IQR) IC50 of ferroquine for Pfk13 C580Y parasites with amplification of the Pfpm2 gene was 17.2 nM (14.5-20.5) versus 9.1 nM (7.9-10.7) for Pfk13 C580Y parasites with amplification of the Pfmdr1 gene. CONCLUSIONS: Ferroquine exerts promising efficacy against ACT-resistant isolates. Whereas Pfpm2 amplification was associated with the highest parasite tolerance to ferroquine, the susceptibility range observed was in accordance with those measured in ACT resistance-free areas. This enables consideration of ferroquine as a relevant therapeutic option against ACT-resistant malaria.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Compuestos Ferrosos/farmacología , Metalocenos/farmacología , Plasmodium falciparum/efectos de los fármacos , Cambodia , Quimioterapia Combinada , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/parasitología , Pruebas de Sensibilidad Parasitaria
8.
Lancet Infect Dis ; 17(2): 174-183, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27818097

RESUMEN

BACKGROUND: Western Cambodia is the epicentre of Plasmodium falciparum multidrug resistance and is facing high rates of dihydroartemisinin-piperaquine treatment failures. Genetic tools to detect the multidrug-resistant parasites are needed. Artemisinin resistance can be tracked using the K13 molecular marker, but no marker exists for piperaquine resistance. We aimed to identify genetic markers of piperaquine resistance and study their association with dihydroartemisinin-piperaquine treatment failures. METHODS: We obtained blood samples from Cambodian patients infected with P falciparum and treated with dihydroartemisinin-piperaquine. Patients were followed up for 42 days during the years 2009-15. We established in-vitro and ex-vivo susceptibility profiles for a subset using piperaquine survival assays. We determined whole-genome sequences by Illumina paired-reads sequencing, copy number variations by qPCR, RNA concentrations by qRT-PCR, and protein concentrations by immunoblotting. Fisher's exact and non-parametric Wilcoxon rank-sum tests were used to identify significant differences in single-nucleotide polymorphisms or copy number variants, respectively, for differential distribution between piperaquine-resistant and piperaquine-sensitive parasite lines. FINDINGS: Whole-genome exon sequence analysis of 31 culture-adapted parasite lines associated amplification of the plasmepsin 2-plasmepsin 3 gene cluster with in-vitro piperaquine resistance. Ex-vivo piperaquine survival assay profiles of 134 isolates correlated with plasmepsin 2 gene copy number. In 725 patients treated with dihydroartemisinin-piperaquine, multicopy plasmepsin 2 in the sample collected before treatment was associated with an adjusted hazard ratio (aHR) for treatment failure of 20·4 (95% CI 9·1-45·5, p<0·0001). Multicopy plasmepsin 2 predicted dihydroartemisinin-piperaquine failures with 0·94 (95% CI 0·88-0·98) sensitivity and 0·77 (0·74-0·81) specificity. Analysis of samples collected across the country from 2002 to 2015 showed that the geographical and temporal increase of the proportion of multicopy plasmepsin 2 parasites was highly correlated with increasing dihydroartemisinin-piperaquine treatment failure rates (r=0·89 [95% CI 0·77-0·95], p<0·0001, Spearman's coefficient of rank correlation). Dihydroartemisinin-piperaquine efficacy at day 42 fell below 90% when the proportion of multicopy plasmepsin 2 parasites exceeded 22%. INTERPRETATION: Piperaquine resistance in Cambodia is strongly associated with amplification of plasmepsin 2-3, encoding haemoglobin-digesting proteases, regardless of the location. Multicopy plasmepsin 2 constitutes a surrogate molecular marker to track piperaquine resistance. A molecular toolkit combining plasmepsin 2 with K13 and mdr1 monitoring should provide timely information for antimalarial treatment and containment policies. FUNDING: Institut Pasteur in Cambodia, Institut Pasteur Paris, National Institutes of Health, WHO, Agence Nationale de la Recherche, Investissement d'Avenir programme, Laboratoire d'Excellence Integrative "Biology of Emerging Infectious Diseases".


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Biomarcadores/metabolismo , Estudios de Asociación Genética , Malaria Falciparum/tratamiento farmacológico , Quinolinas/uso terapéutico , Ácido Aspártico Endopeptidasas , Cambodia , Variaciones en el Número de Copia de ADN/genética , Resistencia a Múltiples Medicamentos , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Insuficiencia del Tratamiento
9.
Eur J Med Chem ; 89: 386-400, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25462254

RESUMEN

An in vitro screening of the anti-apicomplexan activity of 51 compounds, stemming from our chemical library and from chemical synthesis, was performed. As a study model, we used Toxoplasma gondii (T. gondii), expressing ß-galactosidase for the colorimetric assessment of drug activity on parasites cultivated in vitro. This approach allowed the validation of a new series of molecules with a biphenylimidazoazine scaffold as inhibitors of T. gondii growth in vitro. Hence, 8 molecules significantly inhibited intracellular replication of T. gondii in vitro, with EC50 < 1 µM, while being non-toxic for human fibroblasts at these concentrations. Most attractive candidates were then selected for further biological investigations on other apicomplexan parasites (Neospora caninum, Besnoitia besnoiti, Eimeria tenella and Plasmodium falciparum). Finally, two compounds were able to inhibit growth of four different apicomplexans with EC50 in the submicromolar to nanomolar range, for each parasite. These data, including the broad anti-parasite spectrum of these inhibitors, define a new generation of potential anti-parasite compounds of wide interest, including for veterinary application. Studies realized on E. tenella suggest that these molecules act during the intracellular development steps of the parasite. Further experiments should be done to identify the molecular target(s) of these compounds.


Asunto(s)
Antiprotozoarios/farmacología , Apicomplexa/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Imidazoles/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Antiprotozoarios/química , Antiprotozoarios/toxicidad , Apicomplexa/crecimiento & desarrollo , Compuestos de Bifenilo/química , Compuestos de Bifenilo/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Imidazoles/química , Imidazoles/toxicidad , Estructura Molecular , Piridazinas/química , Piridazinas/farmacología , Piridazinas/toxicidad , Piridinas/química , Piridinas/farmacología , Piridinas/toxicidad , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/toxicidad , Relación Estructura-Actividad , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo
10.
PLoS One ; 9(10): e109269, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25343504

RESUMEN

BACKGROUND: Malaria remains a major global health concern. The development of novel therapeutic strategies is critical to overcome the selection of multiresistant parasites. The subtilisin-like protease (SUB1) involved in the egress of daughter Plasmodium parasites from infected erythrocytes and in their subsequent invasion into fresh erythrocytes has emerged as an interesting new drug target. FINDINGS: Using a computational approach based on homology modeling, protein-protein docking and mutation scoring, we designed protein-based inhibitors of Plasmodium vivax SUB1 (PvSUB1) and experimentally evaluated their inhibitory activity. The small peptidic trypsin inhibitor EETI-II was used as scaffold. We mutated residues at specific positions (P4 and P1) and calculated the change in free-energy of binding with PvSUB1. In agreement with our predictions, we identified a mutant of EETI-II (EETI-II-P4LP1W) with a Ki in the medium micromolar range. CONCLUSIONS: Despite the challenges related to the lack of an experimental structure of PvSUB1, the computational protocol we developed in this study led to the design of protein-based inhibitors of PvSUB1. The approach we describe in this paper, together with other examples, demonstrates the capabilities of computational procedures to accelerate and guide the design of novel proteins with interesting therapeutic applications.


Asunto(s)
Malaria Vivax/metabolismo , Simulación del Acoplamiento Molecular , Plasmodium vivax/química , Proteínas Protozoarias/química , Subtilisinas/química , Catálisis , Cristalografía por Rayos X , Humanos , Malaria Vivax/patología , Plasmodium vivax/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/genética , Homología de Secuencia de Aminoácido , Subtilisinas/genética
11.
Nat Commun ; 5: 4833, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25204226

RESUMEN

The Plasmodium subtilase SUB1 plays a pivotal role during the egress of malaria parasites from host hepatocytes and erythrocytes. Here we report the crystal structure of full-length SUB1 from the human-infecting parasite Plasmodium vivax, revealing a bacterial-like catalytic domain in complex with a Plasmodium-specific prodomain. The latter displays a novel architecture with an amino-terminal insertion that functions as a 'belt', embracing the catalytic domain to further stabilize the quaternary structure of the pre-protease, and undergoes calcium-dependent autoprocessing during subsequent activation. Although dispensable for recombinant enzymatic activity, the SUB1 'belt' could not be deleted in Plasmodium berghei, suggesting an essential role of this domain for parasite development in vivo. The SUB1 structure not only provides a valuable platform to develop new anti-malarial candidates against this promising drug target, but also defines the Plasmodium-specific 'belt' domain as a key calcium-dependent regulator of SUB1 during parasite egress from host cells.


Asunto(s)
Plasmodium berghei , Plasmodium vivax , Proteínas Protozoarias/metabolismo , Subtilisinas/metabolismo , Secuencia de Aminoácidos , Antimaláricos/uso terapéutico , Cristalografía , Humanos , Malaria Vivax/tratamiento farmacológico , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Estructura Terciaria de Proteína
12.
Malar J ; 13: 110, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24649924

RESUMEN

BACKGROUND: A flow cytometric method is proposed to study in vitro drug sensitivity of Plasmodium falciparum. Standard [(3)H]-hypoxanthine incorporation assay gives only information on inhibition of maturation by drugs. This method is usable on field isolates and provides data on both inhibition of maturation and re-invasion. METHODS: The method is based on the staining of parasites with hydroethidine (HE) and thiazole orange (TO) which allow differential identification of early, trophozoite and late stage of the parasite by flow cytometry. Late stages of the parasites are obtained by incubation in culture for 24 hours. Reinvasion is followed by culturing parasitized red blood cells for 24 h more. RESULTS: Compared to the standard [(3)H]-hypoxanthine incorporation assay, it gave similar results as expressed by 50% inhibitory concentrations for chloroquine of laboratory strains and "field" isolates. The effect of quinine on the schizont-ring transition was also explored using this method. First data on the inhibition of re-invasion induced by quinine are presented for both P. falciparum-cultured strains and field isolates. DISCUSSION: This method is simple to use event for field isolate study. It is suitable to analyse effect of drugs on steps of the parasite life cycle different for the maturation one. Using this method quinine was found to have a inhibitory effect on re-invasion of red cells by Plasmodium.


Asunto(s)
Antimaláricos/farmacología , Benzotiazoles , Resistencia a Medicamentos , Citometría de Flujo/métodos , Colorantes Fluorescentes , Fenantridinas , Plasmodium falciparum/efectos de los fármacos , Quinolinas , Cloroquina/farmacología , Concentración 50 Inhibidora , Quinina/farmacología
13.
PLoS One ; 9(1): e86658, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475165

RESUMEN

Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening and possibly for large-scale production, distribution and delivery of a malaria vaccine in developing countries.


Asunto(s)
Reactores Biológicos , Sistemas de Liberación de Medicamentos/métodos , Vacunas contra la Malaria/biosíntesis , Pichia/metabolismo , Plasmodium berghei/química , Proteínas Protozoarias/metabolismo , Animales , Descubrimiento de Drogas , Técnica del Anticuerpo Fluorescente , Vacunas contra la Malaria/administración & dosificación , Virus del Sarampión/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Nucleoproteínas/metabolismo , Proteínas Protozoarias/aislamiento & purificación , Ribonucleoproteínas/biosíntesis
14.
Nature ; 505(7481): 50-5, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24352242

RESUMEN

Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Alelos , Animales , Células Sanguíneas/parasitología , Cambodia , Resistencia a Medicamentos/efectos de los fármacos , Marcadores Genéticos/genética , Semivida , Humanos , Malaria Falciparum/tratamiento farmacológico , Mutación/genética , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/aislamiento & purificación , Polimorfismo de Nucleótido Simple/genética , Estructura Terciaria de Proteína/genética , Proteínas Protozoarias/química , Factores de Tiempo
15.
J Biol Chem ; 288(46): 33336-46, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24089525

RESUMEN

In their mammalian host, Plasmodium parasites have two obligatory intracellular development phases, first in hepatocytes and subsequently in erythrocytes. Both involve an orchestrated process of invasion into and egress from host cells. The Plasmodium SUB1 protease plays a dual role at the blood stage by enabling egress of the progeny merozoites from the infected erythrocyte and priming merozoites for subsequent erythrocyte invasion. Here, using conditional mutagenesis in P. berghei, we show that SUB1 plays an essential role at the hepatic stage. Stage-specific sub1 invalidation during prehepatocytic development showed that SUB1-deficient parasites failed to rupture the parasitophorous vacuole membrane and to egress from hepatocytes. Furthermore, mechanically released parasites were not adequately primed and failed to establish a blood stage infection in vivo. The critical involvement of SUB1 in both pre-erythrocytic and erythrocytic developmental phases qualifies SUB1 as an attractive multistage target for prophylactic and therapeutic anti-Plasmodium intervention strategies.


Asunto(s)
Hepatocitos/parasitología , Malaria/metabolismo , Plasmodium berghei/enzimología , Proteínas Protozoarias/metabolismo , Subtilisinas/metabolismo , Vacuolas/parasitología , Animales , Hepatocitos/metabolismo , Hepatocitos/patología , Malaria/patología , Malaria/terapia , Ratones , Mutagénesis , Plasmodium berghei/genética , Proteínas Protozoarias/genética , Subtilisinas/genética , Vacuolas/metabolismo , Vacuolas/patología
16.
J Biol Chem ; 288(25): 18561-73, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23653352

RESUMEN

Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 µM for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.


Asunto(s)
Plasmodium vivax/enzimología , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Serina Proteasas/química , Secuencia de Aminoácidos , Animales , Antimaláricos/química , Antimaláricos/farmacología , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Femenino , Cinética , Malaria/parasitología , Malaria/prevención & control , Merozoítos/efectos de los fármacos , Merozoítos/enzimología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/enzimología , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Serina Proteasas/genética , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Células Sf9 , Especificidad por Sustrato
17.
Methods Mol Biol ; 923: 523-34, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22990802

RESUMEN

Drug discovery programs heavily rely on assays adequately monitoring the activity of the drug on the -parasite stage targeted. So far, assays used to screen molecules active against Plasmodium falciparum parasites have mostly been based on measuring growth inhibition of asexual blood stages. We have developed a robust protocol allowing for monitoring parasite egress at the late schizont stage and subsequent erythrocyte invasion. This cytometry-based methodology uses nucleic acid labelling by the dye YOYO-1 and synchronized in vitro culture of P.falciparum exposed to inhibitors during the late phase of the intraerythrocytic cycle and the reinvasion process. This cytometry-based method is quick, accurate and allows for distinguishing egress from reinvasion on thousands of events. The throughput is also increased, as the assay can be scaled up for medium throughput screening for compounds that inhibit either the egress of merozoites or their entry into host erythrocytes.


Asunto(s)
Antimaláricos/farmacología , Eritrocitos/parasitología , Citometría de Flujo , Merozoítos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Técnicas de Cultivo de Célula , Eritrocitos/efectos de los fármacos , Humanos , Merozoítos/metabolismo , Pruebas de Sensibilidad Parasitaria/métodos , Esquizontes/efectos de los fármacos , Esquizontes/metabolismo
18.
Antimicrob Agents Chemother ; 57(2): 914-23, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23208708

RESUMEN

The declining efficacy of artemisinin derivatives against Plasmodium falciparum in western Cambodia is a major concern. The knowledge gap in the understanding of the mechanisms involved hampers designing monitoring tools. Here, we culture-adapted 20 isolates from Pailin and Ratanakiri (areas of artemisinin resistance and susceptibility in western and eastern Cambodia, respectively) and studied their in vitro response to dihydroartemisinin. No significant difference between the two sets of isolates was observed in the classical isotopic test. However, a 6-h pulse exposure to 700 nM dihydroartemisinin (ring-stage survival assay -RSA]) revealed a clear-cut geographic dichotomy. The survival rate of exposed ring-stage parasites (ring stages) was 17-fold higher in isolates from Pailin (median, 13.5%) than in those from Ratanakiri (median, 0.8%), while exposed mature stages were equally and highly susceptible (0.6% and 0.7%, respectively). Ring stages survived drug exposure by cell cycle arrest and resumed growth upon drug withdrawal. The reduced susceptibility to artemisinin in Pailin appears to be associated with an altered in vitro phenotype of ring stages from Pailin in the RSA.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Cambodia , Puntos de Control del Ciclo Celular/efectos de los fármacos , Malaria Falciparum/parasitología , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/aislamiento & purificación
19.
Nat Protoc ; 6(9): 1412-28, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21886105

RESUMEN

We describe here a highly efficient procedure for conditional mutagenesis in Plasmodium. The procedure uses the site-specific recombination FLP-FRT system of yeast and targets the pre-erythrocytic stages of the rodent Plasmodium parasite P. berghei, including the sporozoite stage and the subsequent liver stage. The technique consists of replacing the gene under study by an FRTed copy (i.e., flanked by FRT sites) in the erythrocytic stages of a parasite clone that expresses the flip (FLP) recombinase stage-specifically--called the 'deleter' clone. We present the available deleter clones, which express FLP at different times of the parasite life cycle, as well as the schemes and tools for constructing new deleter parasites. We also outline and discuss the various strategies for exchanging a wild-type gene with an FRTed copy and for generating conditional gene knockout or knockdown parasite clones. Finally, we detail the protocol for obtaining sporozoites that lack a protein of interest and for monitoring sporozoite-specific DNA excision and depletion of the target protein. The protocol should allow the functional analysis of any essential protein in the sporozoite, liver stage or hepatic merozoite stages of rodent Plasmodium parasites.


Asunto(s)
Ingeniería Genética/métodos , Mutagénesis Sitio-Dirigida/métodos , Plasmodium berghei/genética , Animales , Anopheles/parasitología , Técnicas de Inactivación de Genes , Ratones , Ratas , Ratas Wistar , Recombinación Genética , Esporozoítos/fisiología
20.
PLoS One ; 6(7): e21812, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21818266

RESUMEN

BACKGROUND: Psalmopeotoxin I (PcFK1), a protein of 33 aminoacids derived from the venom of the spider Psalmopoeus Cambridgei, is able to inhibit the growth of Plasmodium falciparum malaria parasites with an IC50 in the low micromolar range. PcFK1 was proposed to act as an ion channel inhibitor, although experimental validation of this mechanism is lacking. The surface loops of PcFK1 have some sequence similarity with the parasite protein sequences cleaved by PfSUB1, a subtilisin-like protease essential for egress of Plasmodium falciparum merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity. FINDINGS: Molecular modeling and docking calculations showed that one loop could interact with the binding site of PfSUB1. The calculated free energy of binding averaged -5.01 kcal/mol, corresponding to a predicted low-medium micromolar constant of inhibition. PcFK1 inhibited the enzymatic activity of the recombinant PfSUB1 enzyme and the in vitro P. falciparum culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1. CONCLUSIONS: Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering.


Asunto(s)
Péptidos/farmacología , Plasmodium falciparum/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Protozoarias/antagonistas & inhibidores , Genética Inversa/métodos , Venenos de Araña/farmacología , Secuencia de Aminoácidos , Biocatálisis/efectos de los fármacos , Merozoítos/citología , Merozoítos/efectos de los fármacos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Péptidos/química , Plasmodium falciparum/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Solventes , Venenos de Araña/química , Subtilisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA