Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 73(14): 4311-22, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23704209

RESUMEN

Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth. Here, we identify RHOA as the molecular target by which autophagy maintains genomic stability. Specifically, inhibition of autophagosome degradation by the loss of the v-ATPase a3 (TCIRG1) subunit is sufficient to induce aneuploidy. Underlying this phenotype, active RHOA is sequestered via p62 (SQSTM1) within autolysosomes and fails to localize to the plasma membrane or to the spindle midbody. Conversely, inhibition of autophagosome formation by ATG5 shRNA dramatically increases localization of active RHOA at the midbody, followed by diffusion to the flanking zones. As a result, all of the approaches we examined that compromise autophagy (irrespective of the defect: autophagosome formation, sequestration, or degradation) drive cytokinesis failure, multinucleation, and aneuploidy, processes that directly have an impact upon cancer progression. Consistently, we report a positive correlation between autophagy defects and the higher expression of RHOA in human lung carcinoma. We therefore propose that autophagy may act, in part, as a safeguard mechanism that degrades and thereby maintains the appropriate level of active RHOA at the midbody for faithful completion of cytokinesis and genome inheritance.


Asunto(s)
Autofagia/fisiología , Citocinesis/fisiología , Inestabilidad Genómica , Proteína de Unión al GTP rhoA/metabolismo , Animales , Autofagia/genética , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Línea Celular , Línea Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , Citocinesis/genética , Células Gigantes/metabolismo , Células Gigantes/fisiología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/fisiología , Ratones , Fagosomas/genética , Fagosomas/metabolismo , Fagosomas/fisiología , Proteolisis , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteína de Unión al GTP rhoA/genética
2.
Mol Biol Cell ; 17(6): 2824-38, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16571678

RESUMEN

The highly conserved small Rho G-protein, Cdc42p plays a critical role in cell polarity and cytoskeleton organization in all eukaryotes. In the yeast Saccharomyces cerevisiae, Cdc42p is important for cell polarity establishment, septin ring assembly, and pheromone-dependent MAP-kinase signaling during the yeast mating process. In this study, we further investigated the role of Cdc42p in the mating process by screening for specific mating defective cdc42 alleles. We have identified and characterized novel mating defective cdc42 alleles that are unaffected in vegetative cell polarity. Replacement of the Cdc42p Val36 residue with Met resulted in a specific cell fusion defect. This cdc42[V36M] mutant responded to mating pheromone but was defective in cell fusion and in localization of the cell fusion protein Fus1p, similar to a previously isolated cdc24 (cdc24-m6) mutant. Overexpression of a fast cycling Cdc42p mutant suppressed the cdc24-m6 fusion defect and conversely, overexpression of Cdc24p suppressed the cdc42[V36M] fusion defect. Taken together, our results indicate that Cdc42p GDP-GTP cycling is critical for efficient cell fusion.


Asunto(s)
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Saccharomyces cerevisiae/fisiología , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Fusión Celular , Polaridad Celular , Genotipo , Datos de Secuencia Molecular , Mutagénesis , Plásmidos , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/fisiología
3.
Eukaryot Cell ; 3(4): 1049-61, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15302837

RESUMEN

During Saccharomyces cerevisiae mating, chemotropic growth and cell fusion are critical for zygote formation. Cdc24p, the guanine nucleotide exchange factor for the Cdc42 G protein, is necessary for oriented growth along a pheromone gradient during mating. To understand the functions of this critical Cdc42p activator, we identified additional cdc24 mating mutants. Two mating-specific mutants, the cdc24-m5 and cdc24-m6 mutants, each were isolated with a mutated residue in the conserved catalytic domain. The cdc24-m6 mutant responds normally to pheromone and orients its growth towards a mating partner yet accumulates prezygotes during mating. cdc24-m6 prezygotes have two apposed intact cell walls and do not correctly localize proteins required for cell fusion, despite normal exocytosis. Our results indicate that the exchange factor Cdc24p is necessary for maintaining or restricting specific proteins required for cell fusion to the cell contact region during mating.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteína de Unión al GTP cdc42/metabolismo , Secuencia de Aminoácidos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Quimiotaxis/fisiología , Datos de Secuencia Molecular , Mutación , Feromonas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Proteína de Unión al GTP cdc42/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...