Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IUCrJ ; 11(Pt 4): 556-569, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856178

RESUMEN

Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein-ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure-thermodynamics correlations for the novel inhibitors of CA IX is discussed - an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein-Ligand Binding Database to understand general protein-ligand recognition principles that could be used in drug discovery.


Asunto(s)
Anhidrasas Carbónicas , Isoenzimas , Unión Proteica , Sulfonamidas , Termodinámica , Humanos , Cristalografía por Rayos X , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Isoenzimas/metabolismo , Isoenzimas/química , Ligandos , Sulfonamidas/química , Sulfonamidas/farmacología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica IX/química , Modelos Moleculares
2.
Expert Opin Drug Discov ; 19(6): 649-670, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715415

RESUMEN

INTRODUCTION: Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED: In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION: The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Proteínas , Ligandos , Proteínas/metabolismo , Humanos , Descubrimiento de Drogas/métodos , Diseño de Fármacos/métodos , Unión Proteica , Ensayos Analíticos de Alto Rendimiento/métodos
3.
Database (Oxford) ; 20232023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290059

RESUMEN

We introduce a protein-ligand binding database (PLBD) that presents thermodynamic and kinetic data of reversible protein interactions with small molecule compounds. The manually curated binding data are linked to protein-ligand crystal structures, enabling structure-thermodynamics correlations to be determined. The database contains over 5500 binding datasets of 556 sulfonamide compound interactions with the 12 catalytically active human carbonic anhydrase isozymes defined by fluorescent thermal shift assay, isothermal titration calorimetry, inhibition of enzymatic activity and surface plasmon resonance. In the PLBD, the intrinsic thermodynamic parameters of interactions are provided, which account for the binding-linked protonation reactions. In addition to the protein-ligand binding affinities, the database provides calorimetrically measured binding enthalpies, providing additional mechanistic understanding. The PLBD can be applied to investigations of protein-ligand recognition and could be integrated into small molecule drug design. Database URL https://plbd.org/.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Ligandos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/metabolismo , Termodinámica , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Unión Proteica
4.
Sci Rep ; 12(1): 17644, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271018

RESUMEN

Numerous human cancers, especially hypoxic solid tumors, express carbonic anhydrase IX (CAIX), a transmembrane protein with its catalytic domain located in the extracellular space. CAIX acidifies the tumor microenvironment, promotes metastases and invasiveness, and is therefore considered a promising anticancer target. We have designed a series of high affinity and high selectivity fluorescein-labeled compounds targeting CAIX to visualize and quantify CAIX expression in cancer cells. The competitive binding model enabled the determination of common CA inhibitors' dissociation constants for CAIX expressed in exponentially growing cancer cells. All tested sulfonamide compounds bound the proliferating cells with similar affinity as to recombinantly purified CAIX. The probes are applicable for the design of selective drug-like compounds for CAIX and the competition strategy could be applied to other drug targets.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias , Humanos , Anhidrasa Carbónica IX/genética , Anhidrasa Carbónica IX/metabolismo , Colorantes Fluorescentes , Anhidrasas Carbónicas/metabolismo , Línea Celular Tumoral , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacología , Fluoresceínas
5.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360737

RESUMEN

The formation of amyloid fibril plaques in the brain creates inflammation and neuron death. This process is observed in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Alpha-synuclein is the main protein found in neuronal inclusions of patients who have suffered from Parkinson's disease. S100A9 is a calcium-binding, pro-inflammation protein, which is also found in such amyloid plaques. To understand the influence of S100A9 on the aggregation of α-synuclein, we analyzed their co-aggregation kinetics and the resulting amyloid fibril structure by Fourier-transform infrared spectroscopy and atomic force microscopy. We found that the presence of S100A9 alters the aggregation kinetics of α-synuclein and stabilizes the formation of a particular amyloid fibril structure. We also show that the solution's ionic strength influences the interplay between S100A9 and α-synuclein, stabilizing a different structure of α-synuclein fibrils.


Asunto(s)
Amiloide/química , Calgranulina B/química , Agregado de Proteínas , alfa-Sinucleína/química , Humanos , Proteínas Recombinantes/química
6.
PLoS One ; 16(6): e0253608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34166457

RESUMEN

Twelve carbonic anhydrase (CA) isoforms catalyze carbon dioxide hydration to bicarbonate and acid protons and are responsible for many biological functions in human body. Despite their vital functions, they are also responsible for, or implicated in, numerous ailments and diseases such as glaucoma, high altitude sickness, and cancer. Because CA isoforms are highly homologous, clinical drugs designed to inhibit enzymatic activity of a particular isoform, can also bind to others with similar affinity causing toxic side effects. In this study, the affinities of twelve CA isoforms have been determined for nineteen clinically used drugs used to treat hypertension related diseases, i.e. thiazides, indapamide, and metolazone. Their affinities were determined using a fluorescent thermal shift assay. Stopped flow assay and isothermal titration calorimetry were also employed on a subset of compounds and proteins to confirm inhibition of CA enzymatic activity and verify the quantitative agreement between different assays. The findings of this study showed that pharmaceuticals could bind to human CA isoforms with variable affinities and inhibit their catalytic activity, even though the drug was intended to interact with a different (non-CA) protein target. Relatively minor structural changes of the compounds may cause significant changes in affinity and selectivity for a particular CA isoform.


Asunto(s)
Anhidrasas Carbónicas/química , Sulfonamidas/química , Tiazidas/química , Dominio Catalítico , Humanos , Isoenzimas/química , Unión Proteica , Relación Estructura-Actividad , Bencenosulfonamidas
7.
ChemistryOpen ; 10(5): 567-580, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33945229

RESUMEN

A key part of the optimization of small molecules in pharmaceutical inhibitor development is to vary the molecular design to enhance complementarity of chemical features of the compound with the positioning of amino acids in the active site of a target enzyme. Typically this involves iterations of synthesis, to modify the compound, and biophysical assay, to assess the outcomes. Selective targeting of the anti-cancer carbonic anhydrase isoform XII (CA XII), this process is challenging because the overall fold is very similar across the twelve CA isoforms. To enhance drug development for CA XII we used a reverse engineering approach where mutation of the key six amino acids in the active site of human CA XII into the CA II isoform was performed to provide a protein chimera (chCA XII) which is amenable to structure-based compound optimization. Through determination of structural detail and affinity measurement of the interaction with over 60 compounds we observed that the compounds that bound CA XII more strongly than CA II, switched their preference and bound more strongly to the engineered chimera, chCA XII, based on CA II, but containing the 6 key amino acids from CA XII, behaved as CA XII in its compound recognition profile. The structures of the compounds in the chimeric active site also resembled those determined for complexes with CA XII, hence validating this protein engineering approach in the development of new inhibitors.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Quimera/metabolismo , Sulfonamidas/química , Amidas/química , Secuencia de Aminoácidos , Inhibidores de Anhidrasa Carbónica/metabolismo , Dominio Catalítico , Cristalización , Diseño de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Relación Estructura-Actividad , Sulfonamidas/farmacología
8.
Eur Biophys J ; 50(3-4): 345-352, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33864100

RESUMEN

This Standard Operating Protocol (SOP) describes the key steps of experimental setup for an inhibition assay of enzymatic activity. The protocol begins with the design of an experiment, including the choice of a catalytic reaction, optimal conditions, fraction and concentration of the active enzyme, substrate and inhibitor concentrations and the positive and negative controls. The protocol ends with the data analysis followed by a typical example of an experiment. Despite an apparently standard procedure, the assay has a number of possible pitfalls such as low fraction of the active enzyme or errors in the analysis such as application of an improper model or incorrect determination of the inhibition constant while not recognizing the dependence on enzyme concentration. The protocol provides examples of necessary steps and controls to avoid these problems and obtain highly reliable results.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Cinética
9.
Medicina (Kaunas) ; 57(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652663

RESUMEN

Leber hereditary optic neuropathy (LHON) is one of the most common inherited mitochondrial optic neuropathies, caused by mitochondrial DNA (mtDNA) mutations. Three most common mutations, namely m.11778G>A, m.14484T>G and m.3460G>A, account for the majority of LHON cases. These mutations lead to mitochondrial respiratory chain complex I damage. Typically, LHON presents at the 15-35 years of age with male predominance. LHON is associated with severe, subacute, painless bilateral vision loss and account for one of the most common causes of legal blindness in young individuals. Spontaneous visual acuity recovery is rare and has been reported in patients harbouring m.14484T>C mutation. Up to date LHON treatment is limited. Idebenone has been approved by European Medicines Agency (EMA) to treat LHON. However better understanding of disease mechanisms and ongoing treatment trials are promising and brings hope for patients. In this article we report on a patient diagnosed with LHON harbouring rare m.11253T>C mutation in MT-ND4 gene, who experienced spontaneous visual recovery. In addition, we summarise clinical presentation, diagnostic features, and treatment.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , ADN Mitocondrial/genética , Humanos , Masculino , Mitocondrias , Mutación , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , Mutación Puntual
10.
PLoS One ; 16(3): e0245675, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33784306

RESUMEN

The protein POT1 (Protection of Telomeres 1) is an integral part of the shelterin complex that protects the ends of human chromosomes from degradation or end fusions. It is the only component of shelterin that binds single-stranded DNA. We describe here the application of two separate fluorescent thermal shift assays (FTSA) that provide quantitative biophysical characterization of POT1 stability and its interactions. The first assay uses Sypro Orange™ and monitors the thermal stability of POT1 and its binding under a variety of conditions. This assay is useful for the quality control of POT1 preparations, for biophysical characterization of its DNA binding and, potentially, as an efficient screening tool for binding of small molecule drug candidates. The second assay uses a FRET-labeled human telomeric G-quadruplex structure that reveals the effects of POT1 binding on thermal stability from the DNA frame of reference. These complementary assays provide efficient biophysical approaches for the quantitative characterization of multiple aspects of POT1 structure and function. The results from these assays provide thermodynamics details of POT1 folding, the sequence selectivity of its DNA binding and the thermodynamic profile for its binding to its preferred DNA binding sequence. Most significantly, results from these assays elucidate two mechanisms for the inhibition of POT1 -DNA interactions. The first is by competitive inhibition at the POT1 DNA binding site. The second is indirect and is by stabilization of G-quadruplex formation within the normal POT1 single-stranded DNA sequence to prevent POT1 binding.


Asunto(s)
Espectrometría de Fluorescencia , Proteínas de Unión a Telómeros/metabolismo , Temperatura , G-Cuádruplex , Humanos , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Complejo Shelterina , Telómero/química , Telómero/metabolismo , Proteínas de Unión a Telómeros/química
11.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321910

RESUMEN

Monoclonal and recombinant antibodies are widely used for the diagnostics and therapy of cancer. They are generated to interact with cell surface proteins which are usually involved in the development and progression of cancer. Carbonic anhydrase XII (CA XII) contributes to the survival of tumors under hypoxic conditions thus is considered a candidate target for antibody-based therapy. In this study, we have generated a novel collection of monoclonal antibodies (MAbs) against the recombinant extracellular domain of CA XII produced in HEK-293 cells. Eighteen out of 24 MAbs were reactive with cellular CA XII on the surface of live kidney and lung cancer cells as determined by flow cytometry. One MAb 14D6 also inhibited the enzymatic activity of recombinant CA XII as measured by the stopped-flow assay. MAb 14D6 showed the migrastatic effect on human lung carcinoma A549 and renal carcinoma A498 cell lines in a 'wound healing' assay. It did not reduce the growth of multicellular lung and renal cancer spheroids but reduced the cell viability by the ATP Bioluminescence assay. Epitope mapping revealed the surface-exposed amino acid sequence (35-FGPDGENS-42) close to the catalytic center of CA XII recognized by the MAb 14D6. The variable regions of the heavy and light chains of MAb 14D6 were sequenced and their complementarity-determining regions were defined. The obtained variable sequences were used to generate recombinant antibodies in two formats: single-chain fragment variable (scFv) expressed in E. coli and scFv fused to human IgG1 Fc fragment (scFv-Fc) expressed in Chinese Hamster Ovary (CHO) cells. Both recombinant antibodies maintained the same specificity for CA XII as the parental MAb 14D6. The novel antibodies may represent promising tools for CA XII-related cancer research and immunotherapy.


Asunto(s)
Anhidrasas Carbónicas/inmunología , Anticuerpos de Cadena Única/inmunología , Células A549 , Animales , Células CHO , Anhidrasas Carbónicas/química , Células Cultivadas , Cricetinae , Cricetulus , Mapeo Epitopo , Células HEK293 , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
12.
Sci Rep ; 9(1): 10606, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337831

RESUMEN

The pore-forming toxins, inerolysin (INY) and vaginolysin (VLY), produced by vaginal bacteria Lactobacillus iners and Gardnerella vaginalis were studied using the artificial cholesterol-rich tethered bilayer membranes (tBLMs) by electrochemical techniques. The electrochemical impedance spectroscopy (EIS) of tBLMs attested for the toxin-induced impairment of the integrity of phospholipid membranes. This observation was in line with the atomic force microscopy data demonstrating formation of oligomeric protein assemblies in tBLMs. These assemblies exhibited different morphologies: VLY mostly formed complete rings, whereas INY produced arciform structures. We found that both EIS (membrane damage) and the surface plasmon resonance (protein binding) data obtained on tBLMs are in-line with the data obtained in human cell lysis experiments. EIS, however, is capable of capturing effects inaccessible for biological activity assays. Specifically, we found that the INY-induced damage of tBLMs is nearly a linear function of membrane cholesterol content, whereas VLY triggered significant damage only at high (50 mol%) cholesterol concentrations. The observed differences of INY and VLY activities on phospholipid membranes might have clinical importance: both toxin-producing bacteria have been found in healthy vagina and dysbiosis, suggesting the need for adaptation at different vaginal conditions. Our results broaden the possibilities of application of tBLMs in medical diagnostics.


Asunto(s)
Citotoxinas/metabolismo , Disbiosis/metabolismo , Metabolismo de los Lípidos , Vagina/microbiología , Espectroscopía Dieléctrica , Disbiosis/microbiología , Femenino , Gardnerella vaginalis/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lactobacillus/metabolismo , Fosfolípidos/metabolismo
13.
Expert Opin Drug Discov ; 14(8): 755-768, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31146609

RESUMEN

Introduction: In pharmaceutical design where future drugs are developed by targeting a specific chosen protein, the evaluation of ligand affinity is crucial. For this very purpose are a multitude of diverse methods which are continuously being improved, which, in turn, makes it difficult to choose which techniques to use in practice. Areas covered: In this review, the authors discuss both experimental and computational approaches for affinity evaluation. Basic principles, general limitations and advantages, as well as main areas of application in drug discovery, are overviewed for some of the most popular ligand binding assays. The authors further provide a guide to affinity predictions, collectively covering several techniques that are used in the first stages of rational drug design. Expert opinion: All affinity estimation methods have limitations and advantages that partially overlap and complement one another. Some of the suggested best practices include cross-verification of data using at least two different techniques and careful data interpretation.


Asunto(s)
Diseño de Fármacos , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Humanos , Ligandos , Unión Proteica , Proteínas/metabolismo
14.
Curr Opin Biotechnol ; 55: 9-15, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30031160

RESUMEN

Isothermal titration calorimetry is widely used to measure the affinities and enthalpies of interaction between proteins and/or small molecules. The quantitative nature of the technique is especially useful in the characterization of recombinant proteins while determining the fraction of protein capable of binding a specific ligand and thus the protein purity. The revealed thermodynamic information sheds light on the binding mechanism, important for the targeted drug design of the biologics. Here we show examples how, together with the thermal shift assay, combination of both techniques enables characterization of protein stability and ligand binding. Furthermore, the binding-linked reactions that strongly affect the observed thermodynamic parameters and must be dissected to obtain the intrinsic parameters that are necessary for the structure-based rational drug design are being demonstrated using inhibitors of Hsp90, an anticancer target protein.


Asunto(s)
Calorimetría/métodos , Proteínas Recombinantes/metabolismo , Ligandos , Unión Proteica , Termodinámica
15.
PLoS One ; 13(7): e0200625, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001418

RESUMEN

The well-known genotypic and phenotypic diversity of G. vaginalis resulted in its classification into at least four subgroups (clades) with diverse genomic properties. To evaluate the virulence potential of G. vaginalis subgroups, we analyzed the virulence-related phenotypic characteristics of 14 isolates of clade 1, 12 isolates of clade 2, 8 isolates of clade 4 assessing their in vitro ability to grow as a biofilm, produce the toxin vaginolysin, and express sialidase activity. Significant differences in VLY production were found (p = 0.023), but further analysis of clade pairs did not confirm this finding. The amount of biofim did not differ significantly among the clades. Analysis of sialidase activity indicated statistically significant differences among the clades (p < 0.001). Production of active recombinant G. vaginalis sialidase demonstrated the link between the sld gene and enzymatic activity, which may be differentially regulated at the transcriptional level. Statistical classification analysis (random forests algorithm) showed that G. vaginalis clades could be best defined by the profiles of two phenotypic characteristics: sialidase activity and vaginolysin production. The results of principal component analysis and hierarchical clustering suggested that all isolates can be subgrouped into three clusters, the structures of which are determined based on phenotypic characteristics of the isolates. Clade 4 was the most homogenous group, as all isolates were found in the same cluster, which is characterized by low production of all studied virulence factors. Clade 2 isolates were mainly distributed between two clusters, whereas clade 1 isolates were found in all three clusters that were characterized by a distinct profile of phenotypic characteristics. Our findings suggest that G. vaginalis subgroups with different virulence potential might play distinct roles in vaginal microbiota.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Gardnerella vaginalis , Neuraminidasa , Fenotipo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Femenino , Gardnerella vaginalis/enzimología , Gardnerella vaginalis/genética , Gardnerella vaginalis/aislamiento & purificación , Gardnerella vaginalis/patogenicidad , Humanos , Neuraminidasa/química , Neuraminidasa/genética , Neuraminidasa/metabolismo
16.
Oncotarget ; 9(42): 26800-26816, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29928486

RESUMEN

Human carbonic anhydrase (CA) IX has emerged as a promising anticancer target and a diagnostic biomarker for solid hypoxic tumors. Novel fluorinated CA IX inhibitors exhibited up to 50 pM affinity towards the recombinant human CA IX, selectivity over other CAs, and direct binding to Zn(II) in the active site of CA IX inducing novel conformational changes as determined by X-ray crystallography. Mass spectrometric gas-analysis confirmed the CA IX-based mechanism of the inhibitors in a CRISPR/Cas9-mediated CA IX knockout in HeLa cells. Hypoxia-induced extracellular acidification was significantly reduced in HeLa, H460, MDA-MB-231, and A549 cells exposed to the compounds, with the IC50 values up to 1.29 nM. A decreased clonogenic survival was observed when hypoxic H460 3D spheroids were incubated with our lead compound. These novel compounds are therefore promising agents for CA IX-specific therapy.

17.
Q Rev Biophys ; 51: e10, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30912486

RESUMEN

The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.


Asunto(s)
Antineoplásicos/química , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/química , Simulación por Computador , Bicarbonatos/química , Dominio Catalítico , Estabilidad de Enzimas , Humanos , Cinética , Estructura Molecular , Isoformas de Proteínas/química , Sulfonamidas/química , Termodinámica
18.
Eur Biophys J ; 47(3): 271-290, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28975383

RESUMEN

Membrane-associated carbonic anhydrase (CA) isoform IV participates in carbon metabolism and pH homeostasis and is implicated in the development of eye diseases such as retinitis pigmentosa and glaucoma. A series of substituted benzenesulfonamides were designed and their binding affinity to CA IV was determined by fluorescent thermal shift assay and isothermal titration calorimetry (ITC). Compound [(4-chloro-2-phenylsulfanyl-5-sulfamoyl-benzoyl)amino]propyl acetate (19) bound CA IV with the K d of 1.0 nM and exhibited significant selectivity over the remaining 11 human CA isoforms. The compound could be developed as a drug targeting CA IV. Various forms of recombinant CA IV were produced in Escherichia coli and mammalian cell cultures. Comparison of their temperature stability in various buffers and salt solutions demonstrated that CA IV is most stable at slightly alkaline conditions and at elevated sodium sulfate concentrations. High-resolution X-ray crystallographic structures of ortho-Cl and meta-thiazole-substituted benzene sulfonamide in complex with CA IV revealed the position of and interactions between the ligand and the protein. Sulfonamide inhibitor binding to CA IV is linked to several reactions-the deprotonation of the sulfonamide amino group, the protonation of CA-Zn(II)-bound hydroxide at the active site of CA IV, and the compensating reactions of the buffer. The dissection of binding-linked reactions yielded the intrinsic thermodynamic parameters, characterizing the interaction between CA IV and the sulfonamides in the binding-able protonation forms, including Gibbs energy, enthalpy, and entropy, that could be used for the characterization of binding to any CA in the process of drug design.


Asunto(s)
Anhidrasa Carbónica IV/antagonistas & inhibidores , Anhidrasa Carbónica IV/metabolismo , Inhibidores de Anhidrasa Carbónica/metabolismo , Proteínas Recombinantes/metabolismo , Anhidrasa Carbónica IV/química , Inhibidores de Anhidrasa Carbónica/farmacología , Dominio Catalítico , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Proteínas Recombinantes/química , Termodinámica
19.
ACS Appl Mater Interfaces ; 9(16): 13976-13987, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28383881

RESUMEN

Hypoxia occurs in most solid tumors, and it has been shown to be an independent prognostic indicator of a poor clinical outcome for patients with various cancers. Therefore, constructing a nanosystem specifically targeting cancer cells under hypoxia conditions is a promising approach for cancer therapy. Herein, we develop a porous silicon (PSi)-based nanosystem for targeted cancer therapy. VD11-4-2, a novel inhibitor for carbonic anhydrase IX (CA IX), is anchored on PSi particles (VD-PSi). As CA IX is mainly expressed on the cancer cell membrane under hypoxia condition, this nanocomplex inherits a strong affinity toward hypoxic human breast adenocarcinoma (MCF-7) cells; thus, a better killing efficiency for the hypoxia-induced drug resistance cancer cell is observed. Furthermore, the release of doxorubicin (DOX) from VD-PSi showed pH dependence, which is possibly due to the hydrogen-bonding interaction between DOX and VD11-4-2. The fluorescence resonance energy transfer effect between DOX and VD11-4-2 is observed and applied for monitoring the DOX release intracellularly. Protein inhibition and binding assays showed that VD-PSi binds and inhibits CA IX. Overall, we developed a novel nanosystem inheriting several advantageous properties, which has great potential for targeted treatment of cancer cells under hypoxic conditions.


Asunto(s)
Anhidrasa Carbónica IX/química , Antígenos de Neoplasias , Hipoxia de la Célula , Línea Celular Tumoral , Doxorrubicina , Humanos , Silicio
20.
J Biochem Mol Toxicol ; 31(6)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28251759

RESUMEN

Herbicides of the dinitroaniline chemical class, widely used oryzalin and trifluralin, and also nitralin were tested as inhibitors of recombinant human carbonic anhydrases (CAs). Oryzalin bound and inhibited 11 out of 12 catalytically active CA isoforms present in the human body with the affinities in the same range as clinically used CA drugs, while no effect was detected for the other two compounds. Binding of all three herbicides was examined by fluorescence-based thermal shift assay, isothermal titration calorimetry, and the inhibition of carbon dioxide hydratase activity. During the last decade, dinitroaniline compound-based therapies against protozoan diseases are being developed. Therefore, it is important to investigate their potential off-target effects, including human CAs.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Dinitrobencenos/farmacología , Herbicidas/farmacología , Sulfanilamidas/farmacología , Acetazolamida/química , Acetazolamida/farmacología , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Antiprotozoarios/química , Calorimetría , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/genética , Dinitrobencenos/química , Herbicidas/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Estructura Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sulfanilamidas/química , Volumetría , Trifluralina/química , Trifluralina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...