Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 411-421, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458776

RESUMEN

The decrease in tight junction proteins and their adapter proteins in the hypertensive brain is remarkable. Here, we aimed to investigate tight junction proteins and peroxisome proliferator-activated receptor (PPARγ) activation as well as inflammation factors and cell death proteins in the brainstem of hypertension models, namely spontaneously hypertensive rats (SHR) and borderline hypertensive rats (BHR). At first, SHR and BHR groups were treated with PPARγ agonist, pioglitazone. Then, occludin, claudin-1, claudin-2, claudin-12, ZO-1, and NF-κB p65 gene expression levels; pIKKß, NF-κB p65, TNF, IL-1ß, caspase-3, caspase-9 levels, and PARP-1 cleavage were evaluated. Significantly lower pIKKß, NF-κB p65, TNF, and IL-1ß levels were measured in pioglitazone-treated SHR. Results from this study confirm higher occludin (1.35-fold), claudin-2 (7.45-fold), claudin-12 (1.12-fold), and NF-κB p65 subunit (4.76-fold) expressions in the BHR group when compared to the SHR group. Pioglitazone was found effective in terms of regulating gene expression in SHR. Pioglitazone significantly increased occludin (8.17-fold), claudin-2 (2.41-fold), and claudin-12 (1.85-fold) mRNA levels, which were accompanied by decreased cleaved caspase-3, caspase-9 levels, PARP-1 activation, and proinflammatory factor levels in SHR (p ˂ 0.05). Our work has led us to conclude that alterations in tight junction proteins, particularly occludin, and cell death parameters in the brainstem following PPARγ activation may contribute to neuroprotection in essential hypertension.


Asunto(s)
Hipertensión , PPAR gamma , Ratas , Animales , Pioglitazona/farmacología , PPAR gamma/metabolismo , FN-kappa B/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Agonistas de PPAR-gamma , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Claudina-2/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Hipertensión/tratamiento farmacológico , Ratas Endogámicas SHR , Muerte Celular , Tronco Encefálico/metabolismo
2.
Biomedicines ; 10(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359339

RESUMEN

This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.

3.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36290657

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular function. We administered hydrogen-rich water (HRW) to 30 subjects with NAFLD in a randomized, double-blinded, placebo-controlled manner for eight weeks. Phenotypically, we observed beneficial trends (p > 0.05) in decreased weight (≈1 kg) and body mass index in the HRW group. HRW was well-tolerated, with no significant changes in liver enzymes and a trend of improved lipid profile and reduced lactate dehydrogenase levels. HRW tended to non-significantly decrease levels of nuclear factor kappa B, heat shock protein 70 and matrix metalloproteinase-9. Interestingly, there was a mild, albeit non-significant, tendency of increased levels of 8-hydroxy-2'-deoxyguanosine and malondialdehyde in the HRW group. This mild increase may be indicative of the hormetic effects of molecular hydrogen that occurred prior to the significant clinical improvements reported in previous longer-term studies. The favorable trends in this study in conjunction with previous animal and clinical findings suggest that HRW may serve as an important adjuvant therapy for promoting and maintaining optimal health and wellness. Longer term studies focused on prevention, maintenance, or treatment of NAFLD and early stages of NASH are warranted.

4.
Cells ; 11(7)2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35406767

RESUMEN

Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development.


Asunto(s)
Enfermedades Cardiovasculares , Factor 2 Relacionado con NF-E2 , Autofagia , Enfermedades Cardiovasculares/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163340

RESUMEN

The prevention of cardiac life-threatening ventricular fibrillation and stroke-provoking atrial fibrillation remains a serious global clinical issue, with ongoing need for novel approaches. Numerous experimental and clinical studies suggest that oxidative stress and inflammation are deleterious to cardiovascular health, and can increase heart susceptibility to arrhythmias. It is quite interesting, however, that various cardio-protective compounds with antiarrhythmic properties are potent anti-oxidative and anti-inflammatory agents. These most likely target the pro-arrhythmia primary mechanisms. This review and literature-based analysis presents a realistic view of antiarrhythmic efficacy and the molecular mechanisms of current pharmaceuticals in clinical use. These include the sodium-glucose cotransporter-2 inhibitors used in diabetes treatment, statins in dyslipidemia and naturally protective omega-3 fatty acids. This approach supports the hypothesis that prevention or attenuation of oxidative and inflammatory stress can abolish pro-arrhythmic factors and the development of an arrhythmia substrate. This could prove a powerful tool of reducing cardiac arrhythmia burden.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
6.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638845

RESUMEN

Helium inhalation induces cardioprotection against ischemia/reperfusion injury, the cellular mechanism of which remains not fully elucidated. Extracellular vesicles (EVs) are cell-derived, nano-sized membrane vesicles which play a role in cardioprotective mechanisms, but their function in helium conditioning (HeC) has not been studied so far. We hypothesized that HeC induces fibroblast-mediated cardioprotection via EVs. We isolated neonatal rat cardiac fibroblasts (NRCFs) and exposed them to glucose deprivation and HeC rendered by four cycles of 95% helium + 5% CO2 for 1 h, followed by 1 h under normoxic condition. After 40 h of HeC, NRCF activation was analyzed with a Western blot (WB) and migration assay. From the cell supernatant, medium extracellular vesicles (mEVs) were isolated with differential centrifugation and analyzed with WB and nanoparticle tracking analysis. The supernatant from HeC-treated NRCFs was transferred to naïve NRCFs or immortalized human umbilical vein endothelial cells (HUVEC-TERT2), and a migration and angiogenesis assay was performed. We found that HeC accelerated the migration of NRCFs and did not increase the expression of fibroblast activation markers. HeC tended to decrease mEV secretion of NRCFs, but the supernatant of HeC or the control NRCFs did not accelerate the migration of naïve NRCFs or affect the angiogenic potential of HUVEC-TERT2. In conclusion, HeC may contribute to cardioprotection by increasing fibroblast migration but not by releasing protective mEVs or soluble factors from cardiac fibroblasts.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Micropartículas Derivadas de Células/fisiología , Fibroblastos/efectos de los fármacos , Helio/farmacología , Miocardio/citología , Animales , Animales Recién Nacidos , Línea Celular , Movimiento Celular/fisiología , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestructura , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Fibroblastos/citología , Fibroblastos/fisiología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Masculino , Microscopía Electrónica de Transmisión , Neovascularización Fisiológica/efectos de los fármacos , Ratas Wistar
7.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923282

RESUMEN

Several mechanisms may contribute to cardiovascular pathology associated with diabetes, including dysregulation of matrix metalloproteinases (MMPs). Quercetin (QCT) is a substance with preventive effects in treatment of cardiovascular diseases and diabetes. The aim of the present study was to explore effects of chronic QCT administration on changes in heart function in aged lean and obese Zucker Diabetic Fatty (ZDF) rats and that in association with MMPs. Signaling underlying effects of diabetes and QCT were also investigated. In the study, we used one-year-old lean and obese ZDF rats treated for 6 weeks with QCT. Results showed that obesity worsened heart function and this was associated with MMP-2 upregulation, MMP-28 downregulation, and inhibition of superoxide dismutases (SODs). Treatment with QCT did not modulate diabetes-induced changes in heart function and MMPs. However, QCT activated Akt kinase and reversed effects of diabetes on SODs inhibition. In conclusion, worsened heart function due to obesity involved changes in MMP-2 and MMP-28 and attenuation of antioxidant defense by SOD. QCT did not have positive effects on improvement of heart function or modulation of MMPs. Nevertheless, its application mediated activation of adaptive responses against oxidative stress through Akt kinase and prevention of diabetes-induced negative effects on antioxidant defense by SODs.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Metaloproteinasa 2 de la Matriz/metabolismo , Obesidad/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , Envejecimiento , Animales , Antioxidantes/farmacología , Glucemia/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasas de la Matriz Secretadas/genética , Ratas , Ratas Zucker
8.
Curr Pharm Des ; 27(5): 610-625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32954996

RESUMEN

There are many situations of excessive production of reactive oxygen species (ROS) such as radiation, ischemia/reperfusion (I/R), and inflammation. ROS contribute to and arises from numerous cellular pathologies, diseases, and aging. ROS can cause direct deleterious effects by damaging proteins, lipids, and nucleic acids as well as exert detrimental effects on several cell signaling pathways. However, ROS are important in many cellular functions. The injurious effect of excessive ROS can hypothetically be mitigated by exogenous antioxidants, but clinically this intervention is often not favorable. In contrast, molecular hydrogen provides a variety of advantages for mitigating oxidative stress due to its unique physical and chemical properties. H2 may be superior to conventional antioxidants, since it can selectively reduce ●OH radicals while preserving important ROS that are otherwise used for normal cellular signaling. Additionally, H2 exerts many biological effects, including antioxidation, anti-inflammation, anti-apoptosis, and anti-shock. H2 accomplishes these effects by indirectly regulating signal transduction and gene expression, each of which involves multiple signaling pathways and crosstalk. The Keap1-Nrf2-ARE signaling pathway, which can be activated by H2, plays a critical role in regulating cellular redox balance, metabolism, and inducing adaptive responses against cellular stress. H2 also influences the crosstalk among the regulatory mechanisms of autophagy and apoptosis, which involve MAPKs, p53, Nrf2, NF-κB, p38 MAPK, mTOR, etc. The pleiotropic effects of molecular hydrogen on various proteins, molecules and signaling pathways can at least partly explain its almost universal pluripotent therapeutic potential.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Antioxidantes/farmacología , Humanos , Hidrógeno , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Antioxidants (Basel) ; 9(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333951

RESUMEN

The increased production of reactive oxygen species and oxidative stress are important factors contributing to the development of diseases of the cardiovascular and central nervous systems. Molecular hydrogen is recognized as an emerging therapeutic, and its positive effects in the treatment of pathologies have been documented in both experimental and clinical studies. The therapeutic potential of hydrogen is attributed to several major molecular mechanisms. This review focuses on the effects of hydrogen on the cardiovascular and central nervous systems, and summarizes current knowledge about its actions, including the regulation of redox and intracellular signaling, alterations in gene expressions, and modulation of cellular responses (e.g., autophagy, apoptosis, and tissue remodeling). We summarize the functions of hydrogen as a regulator of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated redox signaling and the association of hydrogen with mitochondria as an important target of its therapeutic action. The antioxidant functions of hydrogen are closely associated with protein kinase signaling pathways, and we discuss possible roles of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and Wnt/ß-catenin pathways, which are mediated through glycogen synthase kinase 3ß and its involvement in the regulation of cellular apoptosis. Additionally, current knowledge about the role of molecular hydrogen in the modulation of autophagy and matrix metalloproteinases-mediated tissue remodeling, which are other responses to cellular stress, is summarized in this review.

10.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023122

RESUMEN

Matrix metalloproteinases (MMPs) are important in the pathogenesis of numerous diseases. The present study aimed to monitor the activation of MMP-2 and MMP-9 in spontaneously hypertensive rats (SHR) and their normotensive counterparts-Wistar-Kyoto rats (WKY). The animals were divided according to age (7, 20, and 52 weeks) and phenotype into: WKY-7, WKY-20, WKY-52, SHR-7, SHR-20 and SHR-52 groups. MMP plasma activities were determined by gelatine zymography. We monitored selected parameters of oxidative stress and antioxidant status. N-terminal pro-brain natriuretic peptide (NT-proBNP) was determined as a marker of heart function and neurohumoral activation. SHR-7 showed higher MMP-2 activity compared with WKY-7, while SHR-52 showed lower MMP-2 and MMP-9 activities compared with WKY-52. Examining age-dependent changes in MMP activities, we found a decrease in MMP-2 activity and increase in MMP-9 activity with increasing age in both phenotypes. Parameters of oxidative stress and antioxidant status as well as NT-proBNP levels were not significantly worsened due to aging in SHR. Our results suggest that hypertension is accompanied by varying MMP activation during aging. The results of our study may indicate that MMP-2 inhibition is therapeutically applicable during the development of hypertension, while in developed, stabilized and uncomplicated hypertension, systemic MMP-2 and MMP-9 inhibition may not be desirable.


Asunto(s)
Envejecimiento/sangre , Hipertensión/sangre , Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/sangre , Factores de Edad , Envejecimiento/patología , Animales , Antioxidantes/metabolismo , Presión Sanguínea , Humanos , Hipertensión/genética , Hipertensión/patología , Estrés Oxidativo/genética , Fenotipo , Ratas , Ratas Endogámicas SHR/sangre , Ratas Endogámicas WKY
11.
Int J Mol Sci ; 21(17)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882982

RESUMEN

Fetal and hypertrophic remodeling are hallmarks of cardiac restructuring leading chronically to heart failure. Since the Ras/Raf/MEK/ERK cascade (MAPK) is involved in the development of heart failure, we hypothesized, first, that fetal remodeling is different from hypertrophy and, second, that remodeling of the MAPK occurs. To test our hypothesis, we analyzed models of cultured adult rat cardiomyocytes as well as investigated myocytes in the failing human myocardium by western blot and confocal microscopy. Fetal remodeling was induced through endothelial morphogens and monitored by the reexpression of Acta2, Actn1, and Actb. Serum-induced hypertrophy was determined by increased surface size and protein content of cardiomyocytes. Serum and morphogens caused reprogramming of Ras/Raf/MEK/ERK. In both models H-Ras, N-Ras, Rap2, B- and C-Raf, MEK1/2 as well as ERK1/2 increased while K-Ras was downregulated. Atrophy, MAPK-dependent ischemic resistance, loss of A-Raf, and reexpression of Rap1 and Erk3 highlighted fetal remodeling, while A-Raf accumulation marked hypertrophy. The knock-down of B-Raf by siRNA reduced MAPK activation and fetal reprogramming. In conclusion, we demonstrate that fetal and hypertrophic remodeling are independent processes and involve reprogramming of the MAPK.


Asunto(s)
Reprogramación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/citología , Remodelación Vascular , Animales , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/genética , Masculino , Proteínas Quinasas Activadas por Mitógenos/genética , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Transducción de Señal
12.
Antioxidants (Basel) ; 9(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580481

RESUMEN

Cardiac ß-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced ß-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-ß1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.

13.
Nutrients ; 12(4)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230721

RESUMEN

Hysterectomy has a variety of medical indications and improves pre-operative symptoms but might compromise the quality of life during recovery due to symptoms such as fatigue, headache, nausea, depression, or pain. The aim of the present study was to determine the effect of a standardized extract from French oak wood (Quercus robur) containing at least 40% polyphenols of the ellagitannins class, Robuvit®, on convalescence and oxidative stress of women after hysterectomy. Recovery status was monitored with the SF-36 questionnaire. The supplementation with Robuvit® (300 mg/day) during 4 weeks significantly improved general and mental health, while under placebo some items significantly deteriorated. Oxidative stress and enhancement of MMP-9 activity was significantly reduced by Robuvit® versus placebo. After 8 weeks of intervention, the patients' condition improved independently of the intervention. Our results suggest that the use of Robuvit® as a natural supplement relieves post-operative symptoms of patients after hysterectomy and reduces oxidative stress. The study was registered with ID ISRCTN 11457040 (13/09/2019).


Asunto(s)
Antioxidantes , Taninos Hidrolizables , Histerectomía/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales , Adulto , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Método Doble Ciego , Femenino , Humanos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/uso terapéutico , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Periodo Posoperatorio , Encuestas y Cuestionarios , Resultado del Tratamiento
14.
Molecules ; 25(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906454

RESUMEN

Background: Quercetin (QCT) was shown to exert beneficial cardiovascular effects in young healthy animals. The aim of the present study was to determine cardiovascular benefits of QCT in older, 6-month and 1-year-old Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). Methods: Lean (fa/+) and obese (fa/fa) ZDF rats of both ages were treated with QCT for 6 weeks (20 mg/kg/day). Isolated hearts were exposed to ischemia-reperfusion (I/R) injury (30 min/2 h). Endothelium-dependent vascular relaxation was measured in isolated aortas. Expression of selected proteins in heart tissue was detected by Western blotting. Results: QCT reduced systolic blood pressure in both lean and obese 6-month-old rats but had no effect in 1-year-old rats. Diabetes worsened vascular relaxation in both ages. QCT improved vascular relaxation in 6-month-old but worsened in 1-year-old obese rats and had no impact in lean controls of both ages. QCT did not exert cardioprotective effects against I/R injury and even worsened post-ischemic recovery in 1-year-old hearts. QCT up-regulated expression of eNOS in younger and PKCε expression in older rats but did not activate whole PI3K/Akt pathway. Conclusions: QCT might be beneficial for vascular function in diabetes type 2; however, increasing age and/or progression of diabetes may confound its vasculoprotective effects. QCT seems to be inefficient in preventing myocardial I/R injury in type 2 diabetes and/or higher age. Impaired activation of PI3K/Akt kinase pathway might be, at least in part, responsible for failing cardioprotection in these subjects.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Quercetina/uso terapéutico , Análisis de Varianza , Animales , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Zucker , Transducción de Señal/efectos de los fármacos
15.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947691

RESUMEN

The arrhythmogenic potential of ß1-adrenoceptor autoantibodies (ß1-AA), as well as antiarrhythmic properties of omega-3 in heart diseases, have been reported while underlying mechanisms are poorly understood. We aimed to test our hypothesis that omega-3 (eicosapentaenoic acid-EPA, docosahexaenoic acid-DHA) may inhibit matrix metalloproteinase (MMP-2) activity to prevent cleavage of ß1-AR and formation of ß1-AA resulting in attenuation of pro-arrhythmic connexin-43 (Cx43) and protein kinase C (PKC) signaling in the diseased heart. We have demonstrated that the appearance and increase of ß1-AA in blood serum of male and female 12-month-old spontaneously hypertensive rats (SHR) was associated with an increase of inducible ventricular fibrillation (VF) comparing to normotensive controls. In contrast, supplementation of hypertensive rats with omega-3 for two months suppressed ß1-AA levels and reduced incidence of VF. Suppression of ß1-AA was accompanied by a decrease of elevated myocardial MMP-2 activity, preservation of cardiac cell membrane integrity and Cx43 topology. Moreover, omega-3 abrogated decline in expression of total Cx43 as well as its phosphorylated forms at serine 368 along with PKC-ε, while decreased pro-fibrotic PKC-δ levels in hypertensive rat heart regardless the sex. The implication of MMP-2 in the action of omega-3 was also demonstrated in cultured cardiomyocytes in which desensitization of ß1-AR due to permanent activation of ß1-AR with isoproterenol was prevented by MMP-2 inhibitor or EPA. Collectively, these data support the notion that omega-3 via suppression of ß1-AA mechanistically controlled by MMP-2 may attenuate abnormal of Cx43 and PKC-ε signaling; thus, abolish arrhythmia substrate and protect rats with an advanced stage of hypertension from malignant arrhythmias.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Ácidos Grasos Omega-3/farmacología , Hipertensión/complicaciones , Receptores Adrenérgicos beta 1/inmunología , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Biomarcadores , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ácidos Grasos Omega-3/metabolismo , Femenino , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Proteína Quinasa C-epsilon/metabolismo , Ratas , Ratas Endogámicas SHR , Sarcolema/metabolismo , Sarcolema/ultraestructura , Fibrilación Ventricular/tratamiento farmacológico , Fibrilación Ventricular/etiología , Fibrilación Ventricular/fisiopatología
16.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374823

RESUMEN

Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor ß1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.


Asunto(s)
Conexina 43/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hipertensión/metabolismo , Miocardio/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Hipertensión/sangre , Masculino , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Hormonas Tiroideas/sangre
17.
Can J Physiol Pharmacol ; 97(9): 829-836, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30908945

RESUMEN

Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.


Asunto(s)
Conexina 43/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Miocardio/citología , Oxígeno/metabolismo , Transducción de Señal , Animales , Femenino , Miocardio/metabolismo , Proyectos Piloto , Embarazo , Ratas
18.
Can J Physiol Pharmacol ; 97(4): 287-292, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30543459

RESUMEN

Uncontrolled production of oxygen and nitrogen radicals results in oxidative and nitrosative stresses that impair cellular functions and have been regarded as causative common denominators of many pathological processes. In this review, we report on the beneficial effects of molecular hydrogen in scavenging radicals in an artificial system of •OH formation. As a proof of principle, we also demonstrate that in rat hearts in vivo, administration of molecular hydrogen led to a significant increase in superoxide dismutase as well as pAKT, a cell survival signaling molecule. Irradiation of the rats caused a significant increase in lipid peroxidation, which was mitigated by pre-treatment of the animals with molecular hydrogen. The nuclear factor erythroid 2-related factor 2 is regarded as an important regulator of oxyradical homeostasis, as well as it supports the functional integrity of cells, particularly under conditions of oxidative stress. We suggest that the beneficial effects of molecular hydrogen may be through the activation of nuclear factor erythroid 2-related factor 2 pathway that promotes innate antioxidants and reduction of apoptosis, as well as inflammation.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Traumatismos por Radiación/metabolismo , Animales , Humanos , Radical Hidroxilo/metabolismo
19.
Biomed Pharmacother ; 106: 1478-1483, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30119222

RESUMEN

Inhibition of nitric oxide (NO) production can influence blood pressure regulation and increase hypertension. Asymmetric dimethylarginine, ADMA, an analogue of L-arginine, can inhibit NO synthesis, impair endothelial function, and is a risk marker of cardiovascular diseases. Homocysteine (Hcy) level affects oxidative stress production of reactive oxygen species (ROS) in hypertension and also influences changes in signaling and cell damage. The present study was focused on experimental effects of exogenous NOS inhibitors and their effect on ADMA, an endogenous NOS inhibitor, homocysteine and ROS production measured as reactive oxidative metabolites (ROM). We compared effects of the two potential exogenous NO-inhibitors: NG-nitro L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI). Levels of ADMA, Hcy, ROM and total thiols (TTL) were not changed in the L-NAME group. With 7-NI administration, we observed unchanged NOS activity in the left ventricle and a pronounced decrease of ADMA and Hcy levels, accompanied by ROM over-production in plasma. TTL/ROM ratio was more favorable than in the L-NAME group. We observed that 7-NI, an exogenous NOinhibitor, can decrease and improve the levels of ADMA, Hcy, and ROM, and increase TTL/ROM ratio in the plasma of spontaneously hypertensive rats.


Asunto(s)
Arginina/análogos & derivados , Inhibidores Enzimáticos/farmacología , Homocisteína/sangre , Hipertensión/enzimología , Indazoles/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Animales , Aorta/efectos de los fármacos , Aorta/enzimología , Aorta/fisiopatología , Arginina/sangre , Biomarcadores/sangre , Modelos Animales de Enfermedad , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/fisiopatología , Hipertensión/sangre , Hipertensión/fisiopatología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Ratas Endogámicas SHR
20.
Curr Med Chem ; 25(3): 355-366, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-28595547

RESUMEN

BACKGROUND: Ischemia-reperfusion (I/R) injury of the heart as a consequence of myocardial infarction or cardiac surgery represents a serious clinical problem. One of the most prominent mechanisms of I/R injury is the development of oxidative stress in the heart. In this regard, I/R has been shown to enhance the production of reactive oxygen/nitrogen species in the heart which lead to the imbalance between the pro-oxidants and antioxidant capacities of the endogenous radical-scavenging systems. OBJECTIVES: Increasing the antioxidant capacity of the heart by the administration of exogenous antioxidants is considered beneficial for the heart exposed to I/R. N-acetylcysteine (NAC) and Nmercaptopropionylglycine (MPG) are two sulphur containing amino acid substances, which belong to the broad category of exogenous antioxidants that have been tested for their protective potential in cardiac I/R injury. OBSERVATIONS: Pretreatment of hearts with both NAC and MPG has demonstrated that these agents attenuate the I/R-induced alterations in sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils in addition to improving cardiac function. While experimental studies have revealed promising data suggesting beneficial effects of NAC and MPG in cardiac I/R injury, the results of clinical trials are not conclusive because both positive and no effects of these substances have been reported on the post-ischemic recovery of heart following cardiac surgery or myocardial infarction. CONCLUSION: It is concluded that both NAC and MPG exert beneficial effects in preventing the I/Rinduced injury; however, further studies are needed to establish their effectiveness in reversing the I/R-induced abnormalities in the heart.


Asunto(s)
Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Corazón/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Tiopronina/uso terapéutico , Acetilcisteína/química , Animales , Antioxidantes/química , Corazón/fisiopatología , Humanos , Daño por Reperfusión Miocárdica/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Tiopronina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA