Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Neurosci ; 73(9-10): 843-852, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37801210

RESUMEN

Mild traumatic brain injury (mTBI) and repetitive mTBI (RmTBI) are silent epidemics, and so far, there is no objective diagnosis. The severity of the injury is solely based on the Glasgow Coma Score (GCS) scale. Most patients suffer from one or more behavioral abnormalities, such as headache, amnesia, cognitive decline, disturbed sleep pattern, anxiety, depression, and vision abnormalities. Additionally, most neuroimaging modalities are insensitive to capture structural and functional alterations in the brain, leading to inefficient patient management. Metabolomics is one of the established omics technologies to identify metabolic alterations, mostly in biofluids. NMR-based metabolomics provides quantitative metabolic information with non-destructive and minimal sample preparation. We employed whole-blood NMR analysis to identify metabolic markers using a high-field NMR spectrometer (800 MHz). Our approach involves chemical-free sample pretreatment and minimal sample preparation to obtain a robust whole-blood metabolic profile from a rat model of concussion. A single head injury was given to the mTBI group, and three head injuries to the RmTBI group. We found significant alterations in blood metabolites in both mTBI and RmTBI groups compared with the control, such as alanine, branched amino acid (BAA), adenosine diphosphate/adenosine try phosphate (ADP/ATP), creatine, glucose, pyruvate, and glycerphosphocholine (GPC). Choline was significantly altered only in the mTBI group and formate in the RmTBI group compared with the control. These metabolites corroborate previous findings in clinical and preclinical cohorts. Comprehensive whole-blood metabolomics can provide a robust metabolic marker for more accurate diagnosis and treatment intervention for a disease population.


Asunto(s)
Conmoción Encefálica , Ratas , Humanos , Animales , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/metabolismo , Encéfalo/metabolismo , Imagen por Resonancia Magnética , Ansiedad , Neuroimagen
2.
Neurol India ; 69(2): 318-325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33904443

RESUMEN

BACKGROUND: A lot of options have been tried for bridging the two ends of the injured nerves. Researchers have used decellularized nerve grafts, artificial materials and even nerve growth factors to augment functional recovery. These materials are either costly or inaccessible in developing world. OBJECTIVE: The study aimed to evaluate the efficacy of the silicone conduit in a rat sciatic nerve injury model. MATERIALS AND METHODS: 24 healthy Sprague-Dawley (SD) rats (250-300 grams; 8-10 weeks) were used and right sciatic nerve was exposed; transected and re-anastomosed by two different methods in 16 rats. In control group, n = 8 (Group I) the sciatic nerve was untouched; Group II (reverse nerve anastomosis, n = 8): 1-centimeter of nerve was cut and re-anastomosed by using 10-0 monofilament suture; Group III (silicone conduit, n = 8) 1-centimeter nerve segment was cut, replaced by silicone conduit and supplemented by fibrin glue]. Evaluation of nerve recovery was done functionally (pain threshold and sciatic functional index) over 3 months and histologically and electron microscopically. RESULTS: Functional results showed a trend of clinical improvement in Group III and II but recovery was poor and never reached up to normal. Histopathological and electron microscopic results showed an incomplete axonal regeneration in Groups II and III. Psychological analyses showed that no outwards signs of stress were present and none of the rats showed paw biting and teeth chattering. CONCLUSION: The silicone conduit graft may be an economical and effective alternative to presently available interposition grafts, however for short segments only.


Asunto(s)
Regeneración Nerviosa , Neuropatía Ciática , Animales , Ratas , Ratas Sprague-Dawley , Nervio Ciático/cirugía , Neuropatía Ciática/cirugía , Siliconas
3.
Can J Physiol Pharmacol ; 94(7): 788-96, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27223482

RESUMEN

Shikonin possess a diverse spectrum of pharmacological properties in multiple therapeutic areas. However, the nociceptive effect of shikonin is not largely known. To investigate the antinociceptive potential of shikonin, panel of GPCRs, ion channels, and enzymes involved in pain pathogenesis were studied. To evaluate the translation of shikonin efficacy in vivo, it was tested in 3 established rat pain models. Our study reveals that shikonin has significant inhibitory effect on pan sodium channel/N1E115 and NaV1.7 channel with half maximal inhibitory concentration (IC50) value of 7.6 µmol/L and 6.4 µmol/L, respectively, in a cell-based assay. Shikonin exerted significant dose dependent antinociceptive activity at doses of 0.08%, 0.05%, and 0.02% w/v in pinch pain model. In mechanical hyperalgesia model, dose of 10 and 3 mg/kg (intraperitoneal) produced dose-dependent analgesia and showed 67% and 35% reversal of hyperalgesia respectively at 0.5 h. Following oral administration, it showed 39% reversal at 30 mg/kg dose. When tested in first phase of formalin induced pain, shikonin at 10 mg/kg dose inhibited paw flinching by ∼71%. In all studied preclinical models, analgesic effect was similar or better than standard analgesic drugs. The present study unveils the mechanistic role of shikonin on pain modulation, predominantly via sodium channel modulation, suggesting that shikonin could be developed as a potential pain blocker.


Asunto(s)
Analgésicos/farmacología , Naftoquinonas/farmacología , Dimensión del Dolor/efectos de los fármacos , Animales , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Masculino , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley
4.
Anesth Analg ; 120(4): 941-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25695675

RESUMEN

BACKGROUND: Currently approved local anesthetic drugs provide relatively brief local anesthesia that is appropriate and even desirable in some settings, but an extended duration of action beyond their capabilities would be a distinct benefit in other clinical situations. We implemented a drug discovery program that sought to identify novel local anesthetic molecules that specifically demonstrated a long-acting, preferential action on nociceptor sensory afferents that expressed transient receptor potential (TRP) channels. The hypothesis we tested was whether relatively membrane-impermeant local anesthetic molecules could confer long-lasting anesthesia if neuronal access was facilitated by TRP channel activation. The current work describes in vivo studies on a lead molecule that emerged from the discovery program, EN3427, in several rodent pain models. METHODS: Studies were performed on male Sprague-Dawley rats using 2 models of acute mechanical paw-pinch-evoked and pinprick-evoked nociceptive pain. Behavioral responses to noxious stimuli were assessed at baseline, that is, before any pharmacologic intervention, and at various timepoints after a single perisciatic or subcutaneous administration of either EN3427 alone or in combination with lidocaine. Paw withdrawal thresholds or cutaneous trunci reflexes were quantified, and pre-post drug values were compared statistically with analysis of variance followed by post hoc Dunnett multiple range test. RESULTS: A single perisciatic injection of lidocaine (2%) produced relief of paw-pinch-evoked pain that was significantly different from baseline through to the 1-hour timepoint (Dunnett multiplicity-adjusted P = 0.0081), as assessed using paw withdrawal or vocalization end points. EN3427 (0.2%), in the same model, produced a long-lasting block, with pain thresholds being significantly above baseline through to the 18-hour timepoint (Dunnett multiplicity-adjusted P = 0.0002); the combination of EN3427 (0.2%) plus lidocaine (2%) produced even longer lasting analgesia, with pain thresholds being significantly above baseline through to the 24-hour timepoint (Dunnett multiplicity-adjusted P = 0.0073). Similar results were obtained with use of the pinprick approach. A single subcutaneous injection of lidocaine (2%) produced complete loss of sensation to cutaneous pinprick through 0.5 hours, but sensitivity thresholds were no different to baseline by the 1-hour timepoint, a similar injection of EN3427 alone (0.2%) produced a loss of sensation that was significantly different from baseline through the 8-hour timepoint (Dunnett multiplicity-adjusted P = 0.0045), and the combination of lidocaine (2%) plus EN3427 (0.2%) appeared to further enhance duration of analgesia, although this was significantly different from baseline only through the 10-hour timepoint (Dunnett multiplicity-adjusted P = 0.0048). Analgesic efficacy was dose related; using the combined injection approach, we found that increases in the dose of EN3427 with a fixed 2% lidocaine led to substantially extended analgesia and increasing doses of lidocaine combined with a fixed dose of EN3427 (0.2%) led to only modestly increased duration of action. CONCLUSIONS: The present studies demonstrate that a new molecular entity, EN3427, produces effective and long-lasting analgesia in 2 rodent pain models. The analgesic effects of EN3427 are significantly longer-lasting than lidocaine and are further extended when EN3427 is combined with lidocaine. The results are discussed with respect to a possible lidocaine-mediated TRP channel activation and facilitated neuronal access of EN3427, with subsequent entrapment conferring extended-duration efficacy.


Asunto(s)
Anestésicos Locales/uso terapéutico , Indanos/uso terapéutico , Compuestos de Amonio Cuaternario/uso terapéutico , Analgesia , Analgésicos/administración & dosificación , Anestesia/métodos , Anestesia Local , Anestésicos Locales/administración & dosificación , Animales , Diseño de Fármacos , Inyecciones Subcutáneas , Lidocaína/uso terapéutico , Masculino , Destreza Motora , Bloqueo Nervioso/métodos , Nociceptores/efectos de los fármacos , Dolor/tratamiento farmacológico , Manejo del Dolor , Dimensión del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...