RESUMEN
Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated in the oral cavity in response to COVID-19 vaccination. We collected serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines and measured the level of anti-SARS-CoV-2 Ab. We detected anti-Spike and anti-Receptor Binding Domain (RBD) IgG and IgA, as well as anti-Spike/RBD associated secretory component in the saliva of most participants after dose 1. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited diminished anti-Spike/RBD IgG levels, although secretory component-associated anti-Spike Ab were more stable. Examining two prospective cohorts we found that participants who experienced breakthrough infections with SARS-CoV-2 variants had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data suggest that COVID-19 vaccines that elicit a durable IgA response may have utility in preventing infection. Our study finds that a local secretory component-associated IgA response is induced by COVID-19 mRNA vaccination that persists in some, but not all participants. The serum and saliva IgA response modestly correlate at 2-4 weeks post-dose 2. Of note, levels of anti-Spike serum IgA (but not IgG) at this timepoint are lower in participants who subsequently become infected with SARS-CoV-2. As new surges of SARS-CoV-2 variants arise, developing COVID-19 booster shots that provoke high levels of IgA has the potential to reduce person-to-person transmission.
Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Estudios Prospectivos , ARN Mensajero/genética , SARS-CoV-2 , Componente Secretorio , VacunaciónRESUMEN
BACKGROUND: We determined the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in air and on surfaces in rooms of patients hospitalized with coronavirus disease 2019 (COVID-19) and investigated patient characteristics associated with SARS-CoV-2 environmental contamination. METHODS: Nasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at 6 acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 ribonucleic acid (RNA), cultured to determine potential infectivity, and whole viral genomes were sequenced. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated. RESULTS: Severe acute respiratory syndrome coronavirus 2 RNA was detected from surfaces (125 of 474 samples; 42 of 78 patients) and air (3 of 146 samples; 3 of 45 patients); 17% (6 of 36) of surface samples from 3 patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, polymerase chain reaction-positive nasopharyngeal swab (cycle threshold ofâ ≤30) on or after surface sampling date, higher Charlson comorbidity score, and shorter time from onset of illness to sampling date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. CONCLUSIONS: The infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited.
Asunto(s)
COVID-19 , Nasofaringe/virología , Aerosoles y Gotitas Respiratorias , SARS-CoV-2/aislamiento & purificación , Adulto , Anciano , Microbiología del Aire , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Prueba de Ácido Nucleico para COVID-19 , Canadá/epidemiología , Exposición a Riesgos Ambientales , Personal de Salud , Humanos , Pacientes Internos , Persona de Mediana Edad , Pandemias/prevención & control , SARS-CoV-2/genéticaRESUMEN
We enrolled 91 consecutive inpatients with COVID-19 at 6 hospitals in Toronto, Canada, and tested 1 nasopharyngeal swab/saliva sample pair from each patient using real-time RT-PCR for severe acute respiratory syndrome coronavirus 2. Sensitivity was 89% for nasopharyngeal swabs and 72% for saliva (Pâ =â .02). Difference in sensitivity was greatest for sample pairs collected later in illness.
Asunto(s)
COVID-19 , SARS-CoV-2 , Canadá , Humanos , Nasofaringe , Reacción en Cadena en Tiempo Real de la Polimerasa , SalivaRESUMEN
To compare sensitivity of specimens for COVID-19 diagnosis, we tested 151 nasopharyngeal/midturbinate swab pairs from 117 COVID-19 inpatients using reverse-transcriptase polymerase chain reaction (RT-PCR). Sensitivity was 94% for nasopharyngeal and 75% for midturbinate swabs (P = .0001). In 88 nasopharyngeal/midturbinate pairs with matched saliva, sensitivity was 86% for nasopharyngeal swabs and 88% for combined midturbinate swabs/saliva.