Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stat Med ; 43(19): 3742-3758, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38897921

RESUMEN

Biomarkers are often measured in bulk to diagnose patients, monitor patient conditions, and research novel drug pathways. The measurement of these biomarkers often suffers from detection limits that result in missing and untrustworthy measurements. Frequently, missing biomarkers are imputed so that down-stream analysis can be conducted with modern statistical methods that cannot normally handle data subject to informative censoring. This work develops an empirical Bayes g $$ g $$ -modeling method for imputing and denoising biomarker measurements. We establish superior estimation properties compared to popular methods in simulations and with real data, providing the useful biomarker measurement estimations for down-stream analysis.


Asunto(s)
Teorema de Bayes , Biomarcadores , Simulación por Computador , Humanos , Biomarcadores/análisis , Modelos Estadísticos , Estadísticas no Paramétricas , Interpretación Estadística de Datos
2.
medRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38585951

RESUMEN

Despite antiretroviral therapy (ART), HIV persists in latently-infected cells ("the reservoir") which decay slowly over time. Here, leveraging >500 longitudinal samples from 67 people with HIV (PWH) treated during acute infection, we developed a novel mathematical model to predict reservoir decay from peripheral CD4+ T cells. Nonlinear generalized additive models demonstrated rapid biphasic decay of intact DNA (week 0-5: t1/2~2.83 weeks; week 5-24: t1/2~15.4 weeks) that extended out to 1 year. These estimates were ~5-fold faster than prior decay estimates among chronic treated PWH. Defective DNA had a similar biphasic pattern, but data were more variable. Predicted intact and defective decay rates were faster for PWH with earlier timing of ART initiation, higher initial CD4+ T cell count, and lower pre-ART viral load. These data add to our limited understanding of HIV reservoir decay at the time of ART initiation, informing future curative strategies targeting this critical time.

3.
PLoS Pathog ; 19(11): e1011114, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019897

RESUMEN

The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Interleucina-10 , Inflamasomas , VIH-1/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Linfocitos T CD4-Positivos , Inmunidad Innata/genética , Genes Supresores de Tumor , Expresión Génica , ADN , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...