Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 945: 174078, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906279

RESUMEN

This paper investigates the potential of graphene-coated sand (GCS) as an advanced filtration medium for improving water quality and mitigating chemicals of emerging concern (CECs) in treated municipal wastewater, aiming to enhance water reuse. The study utilizes three types of sand (Ottawa, masonry, and concrete) coated with graphene to assess the impact of surface morphology, particle shape, and chemical composition on coating and filtration efficiency. Additionally, sand coated with graphene and activated graphene coated sand were both tested to understand the effect of coating and activation on the filtration process. The materials were characterized using digital microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction analysis. The material's efficiency in removing turbidity, nutrients, chemical oxygen demand (COD), bacteria, and specific CECs (Aciclovir, Diatrizoic acid, Levodopa, Miconazole, Carbamazepine, Diphenhydramine, Irbesartan, Lidocaine, Losartan, and Sulfamethoxazole) was studied. Our findings indicate that GCS significantly improves water quality parameters, with notable efficiency in removing turbidity, COD (14.1 % and 69.1 % removal), and bacterial contaminants (64.9 % and 99.9 % removal). The study also highlights the material's capacity to remove challenging CECs like Sulfamethoxazole (up to 80 % removal) and Diphenhydramine (up to 90 % removal), showcasing its potential as a sustainable solution for water reuse applications. This research contributes to the field by providing a comprehensive evaluation of GCS in water treatment, suggesting its potential for removing CECs from treated municipal wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...