Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Physiol Educ ; 44(2): 124-130, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32108512

RESUMEN

The search for more efficient teaching methodologies is a great challenge for Brazilian educators, since most classes are still traditional (theoretical) and have little student involvement during the learning process. Active learning methodologies, where students play a central role in the learning process, are proving to be more effective and interesting when it comes to acquiring knowledge. Thus we decided to develop an innovative technique for teaching Human Endocrine Physiology, called "Endocrine Circuit." The circuit consisted of eight stations in which students were asked to organize a scheme with cards to answer a specific question about a gland or tissue with endocrine relevance. The effectiveness of the developed activity was validated through a pretest-posttest design, in which the students had to answer a 10-question test. We found out that, after the Endocrine Circuit application, students showed an improvement in the percentage of correct answers for 7 out of 10 questions contained in the questionnaire (P ≤ 0.05). In addition, the activity showed positive outcomes regarding student's engagement in this study, besides showing to be more efficient than the Brazilian traditional theoretical classes.


Asunto(s)
Comprensión , Evaluación Educacional/métodos , Sistema Endocrino/fisiología , Fisiología/educación , Aprendizaje Basado en Problemas/métodos , Brasil , Humanos
2.
Can J Physiol Pharmacol ; 97(11): 1018-1027, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31247150

RESUMEN

ARHGAP21 is a Rho-GAP that controls GTPases activity in several tissues, but its role on liver lipid metabolism is unknown. Thus, to achieve the Rho-GAP role in the liver, control and ARHGAP21-haplodeficient mice were fed chow (Ctl and Het) or high-fat diet (Ctl-HFD and Het-HFD) for 12 weeks, and pyruvate and insulin tolerance tests, insulin signaling, liver glycogen and triglycerides content, gene and protein expression, and very-low-density lipoprotein secretion were measured. Het mice displayed reduced body weight and plasma triglycerides levels, and increased liver insulin signaling. Reduced gluconeogenesis and increased glycogen content were observed in Het-HFD mice. Gene and protein expression of microsomal triglyceride transfer protein were reduced in both Het mice, while the lipogenic genes SREBP-1c and ACC were increased. ARHGAP21 knockdown resulted in hepatic steatosis through increased hepatic lipogenesis activity coupled with decreases in CPT1a expression and very-low-density lipoprotein export. In conclusion, liver of ARHGAP21-haplodeficient mice are more insulin sensitive, associated with higher lipid synthesis and lower lipid export.


Asunto(s)
Proteínas Activadoras de GTPasa/deficiencia , Técnicas de Inactivación de Genes , Insulina/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Obesidad/metabolismo , Obesidad/patología , Animales , Proteínas Activadoras de GTPasa/genética , Glucosa/biosíntesis , Glucógeno/metabolismo , Metabolismo de los Lípidos/genética , Lipoproteínas VLDL/biosíntesis , Lipoproteínas VLDL/metabolismo , Hígado/patología , Ratones , Transducción de Señal/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-31191459

RESUMEN

Inhibition of Rab-GAP TBC1 domain family member 1 (TBC1D1) reduces body weight and increases energy expenditure in mice. Here, we assessed the possible involvement of GTPase activating protein 21 (ARHGAP21), a Rho-GAP protein, in energy homeostasis. Wild-type and whole-body ARHGAP21-haplodeficient mice were fed either chow or high-fat diet for 10 weeks. These mice were analyzed for body weight, food intake, voluntary physical activity, and energy expenditure by indirect calorimetry. Real-time PCR was performed to determine changes in the expression of hypothalamic-anorexic genes. Whole-body ARHGAP21-haplodeficient mice showed lower body weight and food intake associated with increased energy expenditure. These mice also showed higher expression of hypothalamic-anorexic genes such as POMC and CART. Our data suggest that the reduction in body weight of ARHGAP21-haplodeficient mice was related to alterations in the central nervous system. This suggests a new role for ARHGAP21 in energetic metabolism and prompts us to consider GAP protein members as possible targets for the prevention and treatment of obesity and related diseases.

4.
Biochem Cell Biol ; 97(5): 647-654, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30707596

RESUMEN

We investigated the structural and functional adaptations of the pancreas during weight cycling in animals submitted to hypoestrogenism. Female Wistar rats were distributed among the following test groups: ShamAL (AL, ad libitum); OVXAL (ovariectomized); and OVXcycle (dietary restriction with weight cycling). The ShamAL and OVXAL groups received commercial feed ad libitum, whereas the OVXcycle group received 21 days of commercial feed ad libitum, and 21 days of caloric restriction, with caloric intake amounting to 40% of the amount of feed consumed by the rats in the OVXAL group. The tolerance tests for glucose and insulin were applied. After euthanasia, the pancreas and adipose tissue were collected. The disappearance of glucose during the insulin assay occurred at a higher rate in tissues from the OVXcycle group, compared with the OVXAL group. Fasting glycemia and perirenal adipose tissue were lower in the OVXcycle group. By comparison with the ShamAL and OVXAL groups, the OVXcycle group showed higher protein expression of the M1 and M3 receptors and SOD1-2, as well as higher carbachol-induced insulin secretion. Under highly stimulatory conditions with 16.7 mmol/L glucose, the OVXAL and OVXcycle groups presented lower insulin secretion compared with the ShamAL group. Morphological analysis revealed higher iron deposition in the OVXAL islets by comparison with the OVXcycle group. These results show that ovariectomy accelerated the loss of pancreatic islet function, and that weight cycling could restore the function of the islets.


Asunto(s)
Islotes Pancreáticos/metabolismo , Ovariectomía , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/metabolismo , Animales , Femenino , Ratas , Ratas Wistar
5.
Life Sci ; 188: 68-75, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866102

RESUMEN

AIMS: Hypothalamic obesity is a severe condition without any effective therapy. Bariatric operations appear as an alternative treatment, but the effects of this procedure are controversial. We, herein, investigated the effects of duodeno-jejunal bypass (DJB) surgery upon the lipid profile and expression of genes and proteins, involved in the regulation of hepatic lipid metabolism, in hypothalamic obese (HyO) rats. METHODS: During the first 5days of life, male newborn Wistar rats received subcutaneous injections of monosodium glutamate [4g/kg body weight, HyO group] or saline (control, CTL group). At 90days of life, HyO rats were randomly submitted to DJB (HyO DJB) or Sham-operations (HyO Sham group). Six months after DJB, adiposity, hepatic steatosis and lipid metabolism were verified. KEY FINDINGS: HyO Sham rats were obese, hyperinsulinemic, insulin resistant and dyslipidemic. These rats had higher liver contents of trygliceride (TG) and presented disorganization of the hepatocyte structures, in association with higher hepatic contents of acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), and stearoyl-CoA desaturase-1 mRNAs and protein. DJB surgery normalized insulinemia, insulin resistance, and dyslipidemia in HyO rats. TG content in the liver and the hepatic microscopic structures were also normalized in HyO DJB rats, while the expressions of ACC and FASN proteins were decreased in the liver of these rodents. SIGNIFICANCE: The DJB-induced amelioration in hepatic steatosis manifested as a late effect in HyO rats, and was partly associated with a downregulation in hepatic de novo lipogenesis processes, indicating that DJB protects against liver steatosis in hypothalamic obesity.


Asunto(s)
Hígado Graso/metabolismo , Hígado Graso/cirugía , Derivación Gástrica , Metabolismo de los Lípidos , Obesidad/metabolismo , Obesidad/cirugía , Acetil-CoA Carboxilasa/metabolismo , Animales , Ácido Graso Sintasas/metabolismo , Hígado Graso/patología , Masculino , Obesidad/inducido químicamente , Obesidad/patología , Ratas , Glutamato de Sodio , Estearoil-CoA Desaturasa/metabolismo , Triglicéridos/metabolismo
6.
Life Sci ; 127: 53-8, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25744409

RESUMEN

AIMS: ARHGAP21 is a Rho GTPase-activating protein (RhoGAP) that associates with many proteins and modulates several cellular functions, including actin cytoskeleton rearrangement in different tissues. However, it is unknown whether ARHGAP21 is expressed in pancreatic beta cells and its function in these cells. Herein, we assess the participation of ARHGAP21 in insulin secretion. MAIN METHODS: Neonatal mice were treated with anti-sense oligonucleotide against ARHG AP21 (AS) for 2 days, resulting in a reduction of the protein's expression of about 60% in the islets. F-actin depolimerization, insulin secretion,mRNA level of genes involved in insulin secretion, maturation and proliferation were evaluated in islets from both control and AS-treated mice. KEY FINDINGS: ARHGAP21 co-localized with actin inMIN6 beta cells and with insulin in neonatal pancreatic islets. F-actin was reduced in AS-islets, as judged by lower phalloidin intensity. Insulin secretion was increased in islets from AS-treated mice, however no differences were observed in the GSIS (glucose-stimulated insulin secretion). In these islets, the pERK1/2 was increased, as well as the gene expressions of VAMP2 and SNAP25, proteins that are present in the secretory machinery. Maturation and cell proliferation were not affected in islets from AS-treated mice. SIGNIFICANCE: In conclusion, our data show, for the first time, that ARHGAP21 is expressed and participates in the secretory process of pancreatic beta cells. Its effect is probably via pERK1/2, which modulates the rearrangement of the cytoskeleton. ARHGAP21 also controls the expression of genes that encodes proteins of the secretory machinery.


Asunto(s)
Actinas/efectos de los fármacos , Actinas/metabolismo , Proteínas Activadoras de GTPasa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Animales , Animales Recién Nacidos , ADN/biosíntesis , ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Insulina/biosíntesis , Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...