Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epilepsia Open ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813985

RESUMEN

OBJECTIVE: GABAA receptor subunit mutations pose a significant risk for genetic generalized epilepsy; however, there are over 150 identified variants, many with unknown or unvalidated pathogenicity. We aimed to develop in vivo models for testing GABAA receptor variants using the model organism, Caenorhabditis elegans. METHODS: CRISPR-Cas9 gene editing was used to create a complete deletion of unc-49, a C. elegans GABAA receptor, and to create homozygous epilepsy-associated mutations in the endogenous unc-49 gene. The unc-49 deletion strain was rescued with transgenes for either the C. elegans unc-49B subunit or the α1, ß3, and γ2 subunits for the human GABAA receptor. All newly created strains were analyzed for phenotype and compared against existing unc-49 mutations. RESULTS: Nematodes with a full genetic deletion of the entire unc-49 locus were compared with existing unc-49 mutations in three separate phenotypic assays-coordinated locomotion, shrinker frequency and seizure-like convulsions. The full unc-49 deletion exhibited reduced locomotion and increased shrinker frequency and PTZ-induced convulsions, but were not found to be phenotypically stronger than existing unc-49 mutations. Rescue with the unc-49B subunit or creation of humanized worms for the GABAA receptor both showed partial phenotypic rescue for all three phenotypes investigated. Finally, two epilepsy-associated variants were analyzed and deemed to be loss of function, thus validating their pathogenicity. SIGNIFICANCE: These findings establish C. elegans as a genetic model to investigate GABAA receptor mutations and delineate a platform for validating associated variants in any epilepsy-associated gene. PLAIN LANGUAGE SUMMARY: Epilepsy is a complex human disease that can be caused by mutations in specific genes. Many possible mutations have been identified, but it is unknown for most of them whether they cause the disease. We tested the role of mutations in one specific gene using a small microscopic worm as an animal model. Our results establish this worm as a model for epilepsy and confirm that the two unknown mutations are likely to cause the disease.

2.
Cell Tissue Res ; 396(1): 41-55, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403745

RESUMEN

Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of molecular chaperones. CSP is enriched in neurons, where it mainly localises to synaptic vesicles. Mutations in CSP-encoding genes in flies, worms, mice and humans result in neuronal dysfunction, neurodegeneration and reduced lifespan. Most attention has therefore focused on CSP's neuronal functions, although CSP is also expressed in non-neuronal cells. Here, we used genome editing to fluorescently tag the Caenorhabditis elegans CSP orthologue, dnj-14, to identify which tissues preferentially express CSP and hence may contribute to the observed mutant phenotypes. Replacement of dnj-14 with wrmScarlet caused a strong chemotaxis defect, as seen with other dnj-14 null mutants. In contrast, inserting the reporter in-frame to create a DNJ-14-wrmScarlet fusion protein had no effect on chemotaxis, indicating that C-terminal tagging does not impair DNJ-14 function. WrmScarlet fluorescence appeared most obvious in the intestine, head/pharynx, spermathecae and vulva/uterus in the reporter strains, suggesting that DNJ-14 is preferentially expressed in these tissues. Crossing the DNJ-14-wrmScarlet strain with GFP marker strains confirmed the intestinal and pharyngeal expression, but only a partial overlap with neuronal GFP was observed. DNJ-14-wrmScarlet fluorescence in the intestine was increased in response to starvation, which may be relevant to mammalian CSPα's role in microautophagy. DNJ-14's enrichment in worm reproductive tissues (spermathecae and vulva/uterus) parallels the testis-specific expression of CSPß and CSPγ isoforms in mammals. Furthermore, CSPα messenger RNA is highly expressed in the human proximal digestive tract, suggesting that CSP may have a conserved, but overlooked, function within the gastrointestinal system.


Asunto(s)
Sistemas CRISPR-Cas , Caenorhabditis elegans , Proteínas del Choque Térmico HSP40 , Masculino , Animales , Ratones , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Distribución Tisular , Sistemas CRISPR-Cas/genética , Proteínas de la Membrana/metabolismo , Mamíferos/metabolismo
3.
Sci Rep ; 13(1): 20616, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996473

RESUMEN

Biological pathways between alcohol consumption and alcohol liver disease (ALD) are not fully understood. We selected genes with known effect on (1) alcohol consumption, (2) liver function, and (3) gene expression. Expression of the orthologs of these genes in Caenorhabditis elegans and Drosophila melanogaster was suppressed using mutations and/or RNA interference (RNAi). In humans, association analysis, pathway analysis, and Mendelian randomization analysis were performed to identify metabolic changes due to alcohol consumption. In C. elegans, we found a reduction in locomotion rate after exposure to ethanol for RNAi knockdown of ACTR1B and MAPT. In Drosophila, we observed (1) a change in sedative effect of ethanol for RNAi knockdown of WDPCP, TENM2, GPN1, ARPC1B, and SCN8A, (2) a reduction in ethanol consumption for RNAi knockdown of TENM2, (3) a reduction in triradylglycerols (TAG) levels for RNAi knockdown of WDPCP, TENM2, and GPN1. In human, we observed (1) a link between alcohol consumption and several metabolites including TAG, (2) an enrichment of the candidate (alcohol-associated) metabolites within the linoleic acid (LNA) and alpha-linolenic acid (ALA) metabolism pathways, (3) a causal link between gene expression of WDPCP to liver fibrosis and liver cirrhosis. Our results imply that WDPCP might be involved in ALD.


Asunto(s)
Caenorhabditis elegans , Drosophila melanogaster , Metabolismo de los Lípidos , Hepatopatías Alcohólicas , Animales , Humanos , Consumo de Bebidas Alcohólicas/genética , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Etanol/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Cirrosis Hepática/patología , Hepatopatías Alcohólicas/metabolismo
4.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37090152

RESUMEN

Changes in neuronal function that occur with age are an area of increasing importance. A potential significant contributor to age-dependent decline may be alterations to neurotransmitter release. Protein kinases, such as Protein Kinase C and Protein Kinase A, are well characterised modulators of neuronal function and neurotransmission. Protein Kinase D (PRKD) is a serine/threonine kinase whose role in neurons is less well characterised. Here we report that mutations in the C. elegans PRKD homolog, dkf-1 , show an acceleration in age-dependent decline of locomotion rate and an alteration to age-dependent changes in aldicarb sensitivity. These effects could be explained by a pre- or post-synaptic function of the protein kinase as the animal ages.

5.
Hum Mol Genet ; 32(11): 1772-1785, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36282524

RESUMEN

Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disorder characterized by progressive dementia and premature death. Four ANCL-causing mutations have been identified, all mapping to the DNAJC5 gene that encodes cysteine string protein α (CSPα). Here, using Caenorhabditis elegans, we describe an animal model of ANCL in which disease-causing mutations are introduced into their endogenous chromosomal locus, thereby mirroring the human genetic disorder. This was achieved through CRISPR/Cas9-mediated gene editing of dnj-14, the C. elegans ortholog of DNAJC5. The resultant homozygous ANCL mutant worms exhibited reduced lifespans and severely impaired chemotaxis, similar to isogenic dnj-14 null mutants. Importantly, these phenotypes were also seen in balanced heterozygotes carrying one wild-type and one ANCL mutant dnj-14 allele, mimicking the heterozygosity of ANCL patients. We observed a more severe chemotaxis phenotype in heterozygous ANCL mutant worms compared with haploinsufficient worms lacking one copy of CSP, consistent with a dominant-negative mechanism of action. Additionally, we provide evidence of CSP haploinsufficiency in longevity, as heterozygous null mutants exhibited significantly shorter lifespan than wild-type controls. The chemotaxis phenotype of dnj-14 null mutants was fully rescued by transgenic human CSPα, confirming the translational relevance of the worm model. Finally, a focused compound screen revealed that the anti-epileptic drug ethosuximide could restore chemotaxis in dnj-14 ANCL mutants to wild-type levels. This suggests that ethosuximide may have therapeutic potential for ANCL and demonstrates the utility of this C. elegans model for future larger-scale drug screening.


Asunto(s)
Caenorhabditis elegans , Lipofuscinosis Ceroideas Neuronales , Adulto , Animales , Humanos , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Etosuximida/farmacología , Etosuximida/uso terapéutico , Mutación , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo
6.
Biochem J ; 478(24): 4153-4167, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34661239

RESUMEN

Dietary restriction (DR) has been shown to increase lifespan in organisms ranging from yeast to mammals. This suggests that the underlying mechanisms may be evolutionarily conserved. Indeed, upstream signalling pathways, such as TOR, are strongly linked to DR-induced longevity in various organisms. However, the downstream effector proteins that ultimately mediate lifespan extension are less clear. To shed light on this, we used a proteomic approach on budding yeast. Our reasoning was that analysis of proteome-wide changes in response to DR might enable the identification of proteins that mediate its physiological effects, including replicative lifespan extension. Of over 2500 proteins we identified by liquid chromatography-mass spectrometry, 183 were significantly altered in expression by at least 3-fold in response to DR. Most of these proteins were mitochondrial and/or had clear links to respiration and metabolism. Indeed, direct analysis of oxygen consumption confirmed that mitochondrial respiration was increased several-fold in response to DR. In addition, several key proteins involved in mating, including Ste2 and Ste6, were down-regulated by DR. Consistent with this, shmoo formation in response to α-factor pheromone was reduced by DR, thus confirming the inhibitory effect of DR on yeast mating. Finally, we found that Hsp26, a member of the conserved small heat shock protein (sHSP) family, was up-regulated by DR and that overexpression of Hsp26 extended yeast replicative lifespan. As overexpression of sHSPs in Caenorhabditis elegans and Drosophila has previously been shown to extend lifespan, our data on yeast Hsp26 suggest that sHSPs may be universally conserved effectors of longevity.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteoma
7.
Epilepsia ; 61(4): 810-821, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32112430

RESUMEN

OBJECTIVE: Genetic variants in STXBP1, which encodes the conserved exocytosis protein Munc18-1, are associated with a variety of infantile epilepsy syndromes. We aimed to develop an in vivo Caenorhabditis elegans model that could be used to test the pathogenicity of such variants in a cost-effective manner. METHODS: The CRISPR/Cas9 method was used to introduce a null mutation into the unc-18 gene (the C. elegans orthologue of STXBP1), thereby creating a paralyzed worm strain. We subsequently rescued this strain with transgenes encoding the human STXBP1/Munc18-1 protein (wild-type and eight different epilepsy-associated missense variants). The resulting humanized worm strains were then analyzed via behavioral, electrophysiological, and biochemical approaches. RESULTS: Transgenic expression of wild-type human STXBP1 protein fully rescued locomotion in both solid and liquid media to the same level as the standard wild-type worm strain, Bristol N2. Six variant strains (E59K, V84D, C180Y, R292H, L341P, R551C) exhibited impaired locomotion, whereas two (P335L, R406H) were no different from worms expressing wild-type STXBP1. Electrophysiological recordings revealed that all eight variant strains displayed less frequent and more irregular pharyngeal pumping in comparison to wild-type STXBP1-expressing strains. Four strains (V84D, C180Y, R292H, P335L) exhibited pentylenetetrazol-induced convulsions in an acute assay of seizure-like activity, in contrast to worms expressing wild-type STXBP1. No differences were seen between wild-type and variant STXBP1 strains in terms of mRNA abundance. However, STXBP1 protein levels were reduced to 20%-30% of wild-type in all variants, suggesting that the mutations result in STXBP1 protein instability. SIGNIFICANCE: The approach described here is a cost-effective in vivo method for establishing the pathogenicity of genetic variants in STXBP1 and potentially other conserved neuronal proteins. Furthermore, the humanized strains we created could potentially be used in the future for high-throughput drug screens to identify novel therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia/genética , Proteínas Munc18/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Humanos , Mutación , Proteínas de Transporte Vesicular/genética
8.
J Neurosci Methods ; 309: 132-142, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30189284

RESUMEN

BACKGROUND: Epilepsy affects around 1% of people, but existing antiepileptic drugs (AEDs) only offer symptomatic relief and are ineffective in approximately 30% of patients. Hence, new AEDs are sorely needed. However, a major bottleneck is the low-throughput nature of early-stage AED screens in conventional rodent models. This process could potentially be expedited by using simpler invertebrate systems, such as the nematode Caenorhabditis elegans. NEW METHOD: Head-bobbing convulsions were previously reported to be inducible by pentylenetetrazol (PTZ) in C. elegans with loss-of-function mutations in unc-49, which encodes a GABAA receptor. Given that epilepsy-linked mutations in human GABAA receptors are well documented, this could represent a clinically-relevant system for early-stage AED screens. However, the original agar plate-based assay is unsuited to large-scale screening and has not been validated for identifying AEDs. Therefore, we established an alternative streamlined, higher-throughput approach whereby mutants were treated with PTZ and AEDs via liquid-based incubation. RESULTS: Convulsions induced within minutes of PTZ exposure in unc-49 mutants were strongly inhibited by the established AED ethosuximide. This protective activity was independent of ethosuximide's suggested target, the T-type calcium channel, as a null mutation in the worm cca-1 ortholog did not affect ethosuximide's anticonvulsant action. COMPARISON WITH EXISTING METHOD: Our streamlined assay is AED-validated, feasible for higher throughput compound screens, and can facilitate insights into AED mechanisms of action. CONCLUSIONS: Based on an epilepsy-associated genetic background, this C. elegans unc-49 model of seizure-like activity presents an ethical, higher throughput alternative to conventional rodent seizure models for initial AED screens.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Convulsiones/prevención & control , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Convulsivantes/administración & dosificación , Etosuximida/administración & dosificación , Pentilenotetrazol/administración & dosificación , Receptores de GABA-A/genética , Convulsiones/inducido químicamente
9.
Neurobiol Dis ; 118: 40-54, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29940336

RESUMEN

The antiepileptic drug ethosuximide has recently been shown to be neuroprotective in various Caenorhabditis elegans and rodent neurodegeneration models. It is therefore a promising repurposing candidate for the treatment of multiple neurodegenerative diseases. However, high concentrations of the drug are required for its protective effects in animal models, which may impact on its translational potential and impede the identification of its molecular mechanism of action. Therefore, we set out to develop more potent neuroprotective lead compounds based on ethosuximide as a starting scaffold. Chemoinformatic approaches were used to identify compounds with structural similarity to ethosuximide and to prioritise these based on good predicated blood-brain barrier permeability and C. elegans bioaccumulation properties. Selected compounds were initially screened for anti-convulsant activity in a C. elegans pentylenetetrazol-induced seizure assay, as a rapid primary readout of bioactivity; and then assessed for neuroprotective properties in a C. elegans TDP-43 proteinopathy model based on pan-neuronal expression of human A315T mutant TDP-43. The most potent compound screened, α-methyl-α-phenylsuccinimide (MPS), ameliorated the locomotion defects and extended the shortened lifespan of TDP-43 mutant worms. MPS also directly protected against neurodegeneration by reducing the number of neuronal breaks and cell body losses in GFP-labelled GABAergic motor neurons. Importantly, optimal neuroprotection was exhibited by external application of 50 µM MPS, compared to 8 mM for ethosuximide. This greater potency of MPS was not due to bioaccumulation to higher internal levels within the worm, based on 1H-nuclear magnetic resonance analysis. Like ethosuximide, the activity of MPS was abolished by mutation of the evolutionarily conserved FOXO transcription factor, daf-16, suggesting that both compounds act via the same neuroprotective pathway(s). In conclusion, we have revealed a novel neuroprotective activity of MPS that is >100-fold more potent than ethosuximide. This increased potency will facilitate future biochemical studies to identify the direct molecular target(s) of both compounds, as we have shown here that they share a common downstream DAF-16-dependent mechanism of action. Furthermore, MPS is the active metabolite of another approved antiepileptic drug, methsuximide. Therefore, methsuximide may have repurposing potential for treatment of TDP-43 proteinopathies and possibly other human neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Succinimidas/uso terapéutico , Proteinopatías TDP-43/tratamiento farmacológico , Proteinopatías TDP-43/genética , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/química , Anticonvulsivantes/uso terapéutico , Caenorhabditis elegans , Femenino , Masculino , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Succinimidas/química , Proteinopatías TDP-43/patología
10.
Genetics ; 207(3): 1023-1039, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28951527

RESUMEN

Alcohol is a potent pharmacological agent when consumed acutely at sufficient quantities and repeated overuse can lead to addiction and deleterious effects on health. Alcohol is thought to modulate neuronal function through low-affinity interactions with proteins, in particular with membrane channels and receptors. Paradoxically, alcohol acts as both a stimulant and a sedative. The exact molecular mechanisms for the acute effects of ethanol on neurons, as either a stimulant or a sedative, however remain unclear. We investigated the role that the heat shock transcription factor HSF-1 played in determining a stimulatory phenotype of Caenorhabditis elegans in response to physiologically relevant concentrations of ethanol (17 mM; 0.1% v/v). Using genetic techniques, we demonstrate that either RNA interference of hsf-1 or use of an hsf-1(sy441) mutant lacked the enhancement of locomotion in response to acute ethanol exposure evident in wild-type animals. We identify that the requirement for HSF-1 in this phenotype was IL2 neuron-specific and required the downstream expression of the α-crystallin ortholog HSP-16.48 Using a combination of pharmacology, optogenetics, and phenotypic analyses we determine that ethanol activates a Gαs-cAMP-protein kinase A signaling pathway in IL2 neurons to stimulate nematode locomotion. We further implicate the phosphorylation of a specific serine residue (Ser322) on the synaptic protein UNC-18 as an end point for the Gαs-dependent signaling pathway. These findings establish and characterize a distinct neurosensory cell signaling pathway that determines the stimulatory action of ethanol and identifies HSP-16.48 and HSF-1 as novel regulators of this pathway.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Células Quimiorreceptoras/metabolismo , Etanol/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Locomoción , Transducción de Señal , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Sci Rep ; 6: 30023, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435667

RESUMEN

Neuronal calcium sensor-1 (NCS-1) mediates changes in cellular function by regulating various target proteins. Many potential targets have been identified but the physiological significance of only a few has been established. Upon temperature elevation, Caenorhabditis elegans exhibits reversible paralysis. In the absence of NCS-1, worms show delayed onset and a shorter duration of paralysis. This phenotype can be rescued by re-expression of ncs-1 in AIY neurons. Mutants with defects in four potential NCS-1 targets (arf-1.1, pifk-1, trp-1 and trp-2) showed qualitatively similar phenotypes to ncs-1 null worms, although the effect of pifk-1 mutation on time to paralysis was considerably delayed. Inhibition of pifk-1 also resulted in a locomotion phenotype. Analysis of double mutants showed no additive effects between mutations in ncs-1 and trp-1 or trp-2. In contrast, double mutants of arf-1.1 and ncs-1 had an intermediate phenotype, consistent with NCS-1 and ARF-1.1 acting in the same pathway. Over-expression of arf-1.1 in the AIY neurons was sufficient to rescue partially the phenotype of both the arf-1.1 and the ncs-1 null worms. These findings suggest that ARF-1.1 interacts with NCS-1 in AIY neurons and potentially pifk-1 in the Ca(2+) signaling pathway that leads to inhibited locomotion at an elevated temperature.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/efectos de la radiación , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Animales , Locomoción/efectos de la radiación , Temperatura
12.
Genetics ; 202(3): 1013-27, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26773049

RESUMEN

Addiction to drugs is strongly determined by multiple genetic factors. Alcohol and nicotine produce distinct pharmacological effects within the nervous system through discrete molecular targets; yet, data from family and twin analyses support the existence of common genetic factors for addiction in general. The mechanisms underlying addiction, however, are poorly described and common genetic factors for alcohol and nicotine remain unidentified. We investigated the role that the heat shock transcription factor, HSF-1, and its downstream effectors played as common genetic modulators of sensitivity to addictive substances. Using Caenorhabditis elegans, an exemplary model organism with substance dose-dependent responses similar to mammals, we demonstrate that HSF-1 altered sensitivity to both alcohol and nicotine. Using a combination of a targeted RNAi screen of downstream factors and transgenic approaches we identified that these effects were contingent upon the constitutive neuronal expression of HSP-16.48, a small heat shock protein (HSP) homolog of human α-crystallin. Furthermore we demonstrated that the function of HSP-16.48 in drug sensitivity surprisingly was independent of chaperone activity during the heat shock stress response. Instead we identified a distinct domain within the N-terminal region of the HSP-16.48 protein that specified its function in comparison to related small HSPs. Our findings establish and characterize a novel genetic determinant underlying sensitivity to diverse addictive substances.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Etanol/farmacología , Proteínas de Choque Térmico Pequeñas/metabolismo , Nicotina/farmacología , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Choque Térmico Pequeñas/genética , Organismos Modificados Genéticamente , Dominios Proteicos , Interferencia de ARN , Factores de Transcripción/genética , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo
13.
Chem Cent J ; 9: 65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617668

RESUMEN

Age-associated neurodegenerative disorders such as Alzheimer's disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential.

14.
Mol Neurodegener ; 10: 54, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26496836

RESUMEN

The original version of this article [1] unfortunately contained a mistake. The author list contained a spelling error for the author Hannah V. McCue. The original article has been corrected for this error. The corrected author list is given below:Xi Chen, Hannah V. McCue, Shi Quan Wong, Sudhanva S. Kashyap, Brian C. Kraemer, Jeff W. Barclay, Robert D. Burgoyne and Alan Morgan

15.
Mol Neurodegener ; 10: 51, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26419537

RESUMEN

BACKGROUND: Many neurodegenerative diseases are associated with protein misfolding/aggregation. Treatments mitigating the effects of such common pathological processes, rather than disease-specific symptoms, therefore have general therapeutic potential. RESULTS: Here we report that the anti-epileptic drug ethosuximide rescues the short lifespan and chemosensory defects exhibited by C. elegans null mutants of dnj-14, the worm orthologue of the DNAJC5 gene mutated in autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. It also ameliorates the locomotion impairment and short lifespan of worms expressing a human Tau mutant that causes frontotemporal dementia. Transcriptomic analysis revealed a highly significant up-regulation of DAF-16/FOXO target genes in response to ethosuximide; and indeed RNAi knockdown of daf-16 abolished the therapeutic effect of ethosuximide in the worm dnj-14 model. Importantly, ethosuximide also increased the expression of classical FOXO target genes and reduced protein aggregation in mammalian neuronal cells. CONCLUSIONS: We have revealed a conserved neuroprotective mechanism of action of ethosuximide from worms to mammalian neurons. Future experiments in mouse neurodegeneration models will be important to confirm the repurposing potential of this well-established anti-epileptic drug for treatment of human neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Etosuximida/farmacología , Factores de Transcripción Forkhead/genética , Expresión Génica/efectos de los fármacos , Mutación/genética , Animales , Caenorhabditis elegans , Modelos Animales de Enfermedad , Fenotipo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
16.
Sci Rep ; 5: 14392, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26395859

RESUMEN

Cysteine string protein (CSP) is a chaperone of the Dnaj/Hsp40 family of proteins and is essential for synaptic maintenance. Mutations in the human gene encoding CSP, DNAJC5, cause adult neuronal ceroid lipofucinosis (ANCL) which is characterised by progressive dementia, movement disorders, seizures and premature death. CSP null models in mice, flies and worms have been shown to also exhibit similar neurodegenerative phenotypes. Here we have explored the mechanisms underlying ANCL disease progression using Caenorhaditis elegans mutant strains of dnj-14, the worm orthologue of DNAJC5. Transcriptional profiling of these mutants compared to control strains revealed a broad down-regulation of ubiquitin proteasome system (UPS)-related genes, in particular, components of multimeric RING E3 ubiquitin ligases including F-Box, SKR and BTB proteins. These data were supported by the observation that dnj-14 mutant worm strains expressing a GFP-tagged ubiquitin fusion degradation substrate exhibited decreased ubiquitylated protein degradation. The results indicate that disruption of an essential synaptic chaperone leads to changes in expression levels of UPS-related proteins which has a knock-on effect on overall protein degradation in C. elegans. The specific over-representation of E3 ubiquitin ligase components revealed in our study, suggests that proteins and complexes upstream of the proteasome itself may be beneficial therapeutic targets.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas F-Box/biosíntesis , Proteínas del Choque Térmico HSP40/genética , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Proteínas Ligasas SKP Cullina F-box/biosíntesis , Factores de Transcripción/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis , Animales , Antineoplásicos/farmacología , Bortezomib/farmacología , Caenorhabditis elegans/genética , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Chaperonas Moleculares/genética , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Ubiquitina-Proteína Ligasas/genética
17.
Hum Mol Genet ; 23(22): 5916-27, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24947438

RESUMEN

Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Sirtuinas/metabolismo , Estilbenos/farmacología , Adulto , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Evaluación Preclínica de Medicamentos , Proteínas del Choque Térmico HSP40/genética , Humanos , Esperanza de Vida , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Resveratrol , Sirtuinas/genética
18.
PLoS One ; 8(11): e81117, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244732

RESUMEN

The molecular mechanisms underlying sensitivity to alcohol are incompletely understood. Recent research has highlighted the involvement of two presynaptic proteins, Munc18 and Rab3. We have previously characterised biochemically a number of specific Munc18 point mutations including an E466K mutation that augments a direct Rab3 interaction. Here the phenotypes of this and other Munc18 mutations were assessed in alcohol sensitivity and exocytosis using Caenorhabditis elegans. We found that expressing the orthologous E466K mutation (unc-18 E465K) enhanced alcohol sensitivity. This enhancement in sensitivity was surprisingly independent of rab-3. In contrast unc-18 R39C, which decreases syntaxin binding, enhanced sensitivity to alcohol in a manner requiring rab-3. Finally, overexpression of R39C could suppress partially the reduction in neurotransmitter release in rab-3 mutant worms, whereas wild-type or E465K mutants showed no rescue. These data indicate that the epistatic interactions between unc-18 and rab-3 in modulating sensitivity to alcohol are distinct from interactions affecting neurotransmitter release.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Etanol/farmacología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fosfoproteínas/genética , Mutación Puntual/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Proteínas de Transporte Vesicular/genética
19.
Mol Brain ; 6: 39, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23981466

RESUMEN

BACKGROUND: Intracellular Ca2+ regulates many aspects of neuronal function through Ca2+ binding to EF hand-containing Ca2+ sensors that in turn bind target proteins to regulate their function. Amongst the sensors are the neuronal calcium sensor (NCS) family of proteins that are involved in multiple neuronal signalling pathways. Each NCS protein has specific and overlapping targets and physiological functions and specificity is likely to be determined by structural features within the proteins. Common to the NCS proteins is the exposure of a hydrophobic groove, allowing target binding in the Ca2+-loaded form. Structural analysis of NCS protein complexes with target peptides has indicated common and distinct aspects of target protein interaction. Two key differences between NCS proteins are the size of the hydrophobic groove that is exposed for interaction and the role of their non-conserved C-terminal tails. RESULTS: We characterised the role of NCS-1 in a temperature-dependent locomotion assay in C. elegans and identified a distinct phenotype in the ncs-1 null in which the worms do not show reduced locomotion at actually elevated temperature. Using rescue of this phenotype we showed that NCS-1 functions in AIY neurons. Structure/function analysis introducing single or double mutations within the hydrophobic groove based on information from characterised target complexes established that both N- and C-terminal pockets of the groove are functionally important and that deletion of the C-terminal tail of NCS-1 did not impair its ability to rescue. CONCLUSIONS: The current work has allowed physiological assessment of suggestions from structural studies on the key structural features that underlie the interaction of NCS-1 with its target proteins. The results are consistent with the notion that full length of the hydrophobic groove is required for the regulatory interactions underlying NCS-1 function whereas the C-terminal tail of NCS-1 is not essential. This has allowed discrimination between two potential modes of interaction of NCS-1 with its targets.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Locomoción/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Temperatura , Secuencia de Aminoácidos , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Neuronas/metabolismo , Eliminación de Secuencia , Relación Estructura-Actividad
20.
J Neurosci ; 32(20): 7042-51, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22593072

RESUMEN

Diacylglycerol (DAG)/protein kinase C (PKC) signaling plays an integral role in the regulation of neuronal function. This is certainly true in Caenorhabditis elegans and in particular for thermosensory signaling and behavior. Downstream molecular targets for transduction of this signaling cascade remain, however, virtually uncharacterized. We investigated whether PKC phosphorylation of Munc18-1, an essential protein in vesicle trafficking and exocytosis, was the downstream effector for DAG regulation of thermosensory behavior. We demonstrate here that the C. elegans ortholog of Munc18-1, UNC-18, was phosphorylated in vitro at Ser322. Transgenic rescue of unc-18-null worms with Ser322 phosphomutants displayed altered thermosensitivity. C. elegans expresses three DAG-regulated PKCs, and blocking UNC-18 Ser322 phosphorylation was phenocopied only by deletion of calcium-activated PKC-2. Expression of nonphosphorylatable UNC-18 S322A, either pan-neuronally or specifically in AFD thermosensory neurons, converted wild-type worms to a pkc-2-null phenotype. These data demonstrate that an individual DAG-dependent thermosensory behavior of an organism is effected specifically by the downstream PKC-2 phosphorylation of UNC-18 on Ser322 in AFD neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Locomoción/fisiología , Fosfoproteínas/fisiología , Proteína Quinasa C/fisiología , Células Receptoras Sensoriales/fisiología , Sensación Térmica/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diglicéridos/metabolismo , Diglicéridos/fisiología , Isoenzimas/genética , Isoenzimas/fisiología , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Qa-SNARE/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...