Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 94(5): 1930-1943, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31260187

RESUMEN

Complexes of colchiceine with monovalent cation perchlorates and iodides have been obtained and characterized by spectroscopic methods. DFT and spectroscopic studies reveal that the dihedral angle ω1-1a-12-12a , crucial for colchicine biological mechanism of action, that is, binding to tubulins depends on the diameter of the complexed metal cation. Biological tests indicated no antifungal properties of colchicine (it was active only toward A.pullulans), in contrast to its derivative-(colchiceine). Complexation of colchiceine with metal cations improved significantly the antifungal potency, even below MIC <1 µg/ml. The colchiceine complexes were more potent than colchiceine, and some of them were even more potent than the fungicidal standard IPBC. The highest potency of colchiceine complexes was noted against A. pullulans (MIC = 0.5 µg/ml). In contrast to the findings concerning antifungal potency, the anticancer studies showed complexes of colchicine more active (~IC50  = 2 nM) than those of colchiceine (~IC50  = 6 µM). MDA-MB-231 breast cancer cell lines and human lung fibroblasts CCD39Lu were also tested.


Asunto(s)
Antifúngicos/síntesis química , Antineoplásicos/síntesis química , Cesio/química , Colchicina/análogos & derivados , Complejos de Coordinación/síntesis química , Rubidio/química , Tubulina (Proteína)/química , Antifúngicos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ascomicetos/efectos de los fármacos , Cationes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colchicina/química , Complejos de Coordinación/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Yoduros/química , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Terapia Molecular Dirigida , Percloratos/química , Relación Estructura-Actividad
2.
Medchemcomm ; 9(10): 1708-1714, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429975

RESUMEN

A series of new semi-synthetic 7-deacetyl-10-alkylthiocolchicne derivatives with ethyl, n-propyl, i-propyl and n-butyl substituents were synthesised and characterised by spectroscopic methods, elemental analysis, DFT calculations and molecular docking simulations. All the synthesized compounds have been tested for fungicidal and anticancer activities against SKOV-3, LoVo, MCF-7, MDA-MB-231 and the lung-derived fibroblast CCD39Lu. All the new colchicine derivatives exhibit significantly higher cytotoxicity towards the SKOV-3 tumour cell line than the natural product - colchicine. The most effective cytotoxic agents were 7-deacetyl-10-n-buthylthiocolchicine and 7-deacetyl-10-i-propylthiocolchicine. Among all the compounds tested, 7-deacetyl-10-n-buthylthiocolchicine exhibited the highest fungicidal activity. Molecular modeling indicated that several mutations found in the ß-tubulin unit of the tested fungal strains are crucial for antifungal activity and selectivity of 7-deacetyl-10-n-buthylthiocolchicine. The obtained results may be useful for the development of selective colchicine derivatives as effective fungicidal and/or anticancer drugs.

3.
J Mol Model ; 23(4): 127, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28321655

RESUMEN

Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1H and 13C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1H, 13C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...