Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4314, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773129

RESUMEN

Peroxisomes are eukaryotic organelles that are essential for multiple metabolic pathways, including fatty acid oxidation, degradation of amino acids, and biosynthesis of ether lipids. Consequently, peroxisome dysfunction leads to pediatric-onset neurodegenerative conditions, including Peroxisome Biogenesis Disorders (PBD). Due to the dynamic, tissue-specific, and context-dependent nature of their biogenesis and function, live cell imaging of peroxisomes is essential for studying peroxisome regulation, as well as for the diagnosis of PBD-linked abnormalities. However, the peroxisomal imaging toolkit is lacking in many respects, with no reporters for substrate import, nor cell-permeable probes that could stain dysfunctional peroxisomes. Here we report that the BODIPY-C12 fluorescent fatty acid probe stains functional and dysfunctional peroxisomes in live mammalian cells. We then go on to improve BODIPY-C12, generating peroxisome-specific reagents, PeroxiSPY650 and PeroxiSPY555. These probes combine high peroxisome specificity, bright fluorescence in the red and far-red spectrum, and fast non-cytotoxic staining, making them ideal tools for live cell, whole organism, or tissue imaging of peroxisomes. Finally, we demonstrate that PeroxiSPY enables diagnosis of peroxisome abnormalities in the PBD CRISPR/Cas9 cell models and patient-derived cell lines.


Asunto(s)
Compuestos de Boro , Ácidos Grasos , Colorantes Fluorescentes , Trastorno Peroxisomal , Peroxisomas , Peroxisomas/metabolismo , Humanos , Ácidos Grasos/metabolismo , Colorantes Fluorescentes/química , Compuestos de Boro/química , Trastorno Peroxisomal/metabolismo , Animales
2.
Blood Adv ; 8(1): 1-13, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37910801

RESUMEN

ABSTRACT: The process of protein phosphorylation is involved in numerous cell functions. In particular, phosphotyrosine (pY) has been reported to play a role in red blood cell (RBC) functions, including the cytoskeleton organization. During their storage before transfusion, RBCs suffer from storage lesions that affect their energy metabolism and morphology. This study investigated the relationship between pY and the storage lesions. To do so, RBCs were treated (in the absence of calcium) with a protein tyrosine phosphatase inhibitor (orthovanadate [OV]) to stimulate phosphorylation and with 3 selective kinase inhibitors (KIs). Erythrocyte membrane proteins were studied by western blot analyses and phosphoproteomics (data are available via ProteomeXchange with identifier PXD039914) and cell morphology by digital holographic microscopy. The increase of pY triggered by OV treatment (inducing a global downregulation of pS and pT) disappeared during the storage. Phosphoproteomic analysis identified 609 phosphoproteins containing 1752 phosphosites, of which 41 pY were upregulated and 2 downregulated by OV. After these phosphorylation processes, the shape of RBCs shifted from discocytes to spherocytes, and the addition of KIs partially inhibited this transition. The KIs modulated either pY or pS and pT via diverse mechanisms related to cell shape, thereby affecting RBC morphology. The capacity of RBCs to maintain their function is central in transfusion medicine, and the presented results contribute to a better understanding of RBC biology.


Asunto(s)
Conservación de la Sangre , Eritrocitos , Humanos , Conservación de la Sangre/métodos , Eritrocitos/metabolismo , Membrana Eritrocítica/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo
3.
Blood Transfus ; 21(4): 277-288, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36346887

RESUMEN

BACKGROUND: The quality of red blood cells (RBCs) stored in red cell concentrates (RCCs) is influenced by processing, storage and donor characteristics, and can have a clinical impact on transfused patients. To evaluate RBC properties and their potential impact in a transfusion setting, a simple in vitro-transfusional model has been developed. MATERIALS AND METHODS: Transfusion was simulated by mixing a washed RBC pool from two male-derived RCCs stored at 4°C with a pool of 15 male-derived fresh frozen plasma (FFP) units, representing the recipient, at a hematocrit (HCT) of 30% ("control" setting) or 5% (alternative model). The mixtures were incubated at 37°C, 5% of CO2 up to 48 h. Different metabolites, hemolysis and microvesicles (MVs) were quantified at several incubation times and RBC-morphology changes and deformability after incubation. For each model, biological triplicates have been investigated with RCCs at storage days 2 and 43. RESULTS: The 5%-HCT model restored the 2,3-DPG level and maintained the ATP level. Furthermore, glucose consumption and corresponding lactate production were increased in the 5%- vs the 30%-HCT condition. Lower hemolysis was observed with 5%-HCT, but only at day 2. However, morphological analysis by digital holographic microscopy (DHM) revealed a decreased fraction of discocytes at 5% rather than at 30% of HCT at storage day 2 but at day 43, the trend was inverted. Concordantly, RBCs incubated at 5% of HCT were more deformable than at 30% at day 43 (p<0.0001). DISCUSSION: Higher metabolic activity of RBCs in the 5%-HCT condition was promoted by a higher glucose availability and limited cell-waste accumulation. The conditions of the new proposed model thus enabled rejuvenation of RBCs and maintained them in a physiological-close state in contrast to the 30%-HCT model. It may be used as a first approach to evaluate e.g., the impact of donor and recipient characteristics on RBC properties.


Asunto(s)
Eritrocitos , Hemólisis , Humanos , Masculino , Hematócrito , Transfusión Sanguínea , Conservación de la Sangre , Glucosa/farmacología
4.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924276

RESUMEN

An increase of oxygen saturation within blood bags and metabolic dysregulation occur during storage of red blood cells (RBCs). It leads to the gradual exhaustion of RBC antioxidant protective system and, consequently, to a deleterious state of oxidative stress that plays a major role in the apparition of the so-called storage lesions. The present study describes the use of a test (called TSOX) based on fluorescence and label-free morphology readouts to simply and quickly evaluate the oxidant and antioxidant properties of various compounds in controlled conditions. Here, TSOX was applied to RBCs treated with four antioxidants (ascorbic acid, uric acid, trolox and resveratrol) and three oxidants (AAPH, diamide and H2O2) at different concentrations. Two complementary readouts were chosen: first, where ROS generation was quantified using DCFH-DA fluorescent probe, and second, based on digital holographic microscopy that measures morphology alterations. All oxidants produced an increase of fluorescence, whereas H2O2 did not visibly impact the RBC morphology. Significant protection was observed in three out of four of the added molecules. Of note, resveratrol induced diamond-shape "Tirocytes". The assay design was selected to be flexible, as well as compatible with high-throughput screening. In future experiments, the TSOX will serve to screen chemical libraries and probe molecules that could be added to the additive solution for RBCs storage.


Asunto(s)
Eritrocitos/metabolismo , Microscopía Fluorescente , Imagen Molecular , Oxidantes/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Descubrimiento de Drogas , Eritrocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Flujo de Trabajo
5.
Blood Transfus ; 19(4): 300-308, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32955427

RESUMEN

BACKGROUND: γ-irradiation is used to treat red blood cell (RBC) concentrates (RCCs) transfused to immunosuppressed patients. This treatment damages RBCs and increases storage lesions. Several studies have shown the beneficial effect of reducing O2 content during RBC storage. The present research work investigated the effect of γ-irradiation on RCCs stored under normal and hypoxia/hypocapnia conditions. MATERIALS AND METHODS: O2 concentration (measured as oxyhaemoglobin fraction, sO2) and ABO-matched RCCs from whole blood donations, leukoreduced and prepared in phosphate, adenine, glucose, guanosine, saline and mannitol (PAGGSM) were pooled and split in two identical RCCs within 24 h post donation. One bag (Hx) was submitted to O2 and CO2 adsorption for 3 h on an orbital shaker at 22±2 °C and then transferred to a storage bag impermeable to gas. The other bag (Ctrl) was left as it was. The two bags were then stored at 4 °C. γ-irradiation (25 Gy) was applied at day 2 or 14, and the RCCs were stored until day 43. Different parameters (metabolites, haemolysis, morphology) were measured. RESULTS: Starting sO2 values were 63.7±18.4% (n=12) in Ctrl and 20.8±9.8% (n=12) in Hx bags, and reached 90.8±9.1% and 6.6±5.9% at day 43, respectively. As expected, an increase in glycolysis rate was observed after deoxygenation. Extracellular potassium concentrations were identical and reached around 70 mM at expiry with an irradiation-dependent kinetic release. No difference in haemolysis was observed after irradiation on day 2 in either group (<0.40%, p>0.9999). When irradiated at day 14, haemolysis was lower (p=0.033) in RCCs under hypoxia at the end of storage (day 28, 0.67±0.16%) compared to control (1.06±0.33%). Percentages of spherocytes were lower under hypoxia. DISCUSSION: The storage under hypoxia provided equivalent storage when RCCs were irradiated at day 2 and was advantageous when irradiated at day 14. In summary, O2-depletion of RCCs enable a better storage of RBCs, particularly when late irradiation is applied.


Asunto(s)
Conservación de la Sangre , Hipocapnia , Eritrocitos , Hemólisis , Humanos , Hipoxia
6.
Metabolites ; 10(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486030

RESUMEN

After blood donation, the red blood cells (RBCs) for transfusion are generally isolated by centrifugation and then filtrated and supplemented with additive solution. The consecutive changes of the extracellular environment participate to the occurrence of storage lesions. In this study, the hypothesis is that restoring physiological levels of uric and ascorbic acids (major plasmatic antioxidants) might correct metabolism defects and protect RBCs from the very beginning of the storage period, to maintain their quality. Leukoreduced CPD-SAGM RBC concentrates were supplemented with 416 µM uric acid and 114 µM ascorbic acid and stored during six weeks at 4 °C. Different markers, i.e., haematological parameters, metabolism, sensitivity to oxidative stress, morphology and haemolysis were analyzed. Quantitative metabolomic analysis of targeted intracellular metabolites demonstrated a direct modification of several metabolite levels following antioxidant supplementation. No significant differences were observed for the other markers. In conclusion, the results obtained show that uric and ascorbic acids supplementation partially prevented the metabolic shift triggered by plasma depletion that occurs during the RBC concentrate preparation. The treatment directly and indirectly sustains the antioxidant protective system of the stored RBCs.

7.
Front Physiol ; 11: 616457, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424640

RESUMEN

Objective: Unexpectedly wide distribution (<10 to >90%) of hemoglobin oxygen saturation (sO2) within red cell concentrates (RCCs) has recently been observed. Causes of such variability are not yet completely explained whereas the roles of oxygen and oxidative lesions during the storage of RCCs are known. The objectives of the present study are to characterize sO2 distribution in RCCs produced in a Swiss blood center and to investigate the influence of processing and donors' characteristics. Methods: The level of sO2 was measured in 1701 leukocyte-depleted RCCs derived from whole blood donations in both top-bottom (TB; component filtered, SAGM) and top-top (TT; whole blood filtration, PAGGSM) RCCs. The sO2 value was measured non-invasively through the PVC bag prior to storage by resonance Raman spectroscopy. Gender, age, blood type, hemoglobin level, and living altitude of donors, as well as process method and time-to-process were recorded. Results: Overall, the sO2 exhibited a wide non-Gaussian distribution with a mean of 51.2 ± 18.5%. Use of top-top kits resulted in a 16% higher sO2 (P < 0.0001) than with top-bottom ones. Waiting time before processing only had a modest impact, but the blood processing itself reduced the sO2 by almost 12% (P < 0.0001). sO2 was also significantly affected by some donors' characteristics. RCCs from men exhibited 25% higher sO2 (P < 0.0001) than those donated by women. Multivariate analysis revealed that the apparent correlation observed with hemoglobin level and age was actually due to multicollinearity with the sex variable. Finally, we noticed no significant differences across blood type but found that altitude of residence was associated with the sO2 (i.e., higher in higher living place). Conclusion: These data confirm wide sO2 distribution in RCCs reported recently. The sO2 was impacted by the processing and also by donors' characteristics such as the gender and the living altitude, but not by the hemoglobin level, blood group and donor age. This study provides new hints on the factors influencing red blood cells storage lesions, since they are known to be related to O2 content within the bags, giving clues to better process and to better store RCCs and therefore potentially improve the efficacy of transfusion.

8.
Biomed Opt Express ; 9(10): 4714-4729, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30319898

RESUMEN

We propose methods to quantitatively calculate the fluctuation rate of red blood cells with nanometric axial and millisecond temporal sensitivity at the single-cell level by using time-lapse holographic cell imaging. For this quantitative analysis, cell membrane fluctuations (CMFs) were measured for RBCs stored at different storage times. Measurements were taken over the whole membrane for both the ring and dimple sections separately. The measurements show that healthy RBCs that maintain their discocyte shape become stiffer with storage time. The correlation analysis demonstrates a significant negative correlation between CMFs and the sphericity coefficient, which characterizes the morphological type of erythrocyte. In addition, we show the correlation results between CMFs and other morphological properties such as projected surface area, surface area, mean corpuscular volume, and mean corpuscular hemoglobin.

9.
Blood Transfus ; 15(3): 239-248, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28518051

RESUMEN

BACKGROUND: Red blood cells collected in citrate-phosphate-dextrose can be stored for up to 42 days at 4 °C in saline-adenine-glucose-mannitol additive solution. During this controlled, but nevertheless artificial, ex vivo ageing, red blood cells accumulate lesions that can be reversible or irreversible upon transfusion. The aim of the present study is to follow several parameters reflecting cell metabolism, antioxidant defences, morphology and membrane dynamics during storage. MATERIALS AND METHODS: Five erythrocyte concentrates were followed weekly during 71 days. Extracellular glucose and lactate concentrations, total antioxidant power, as well as reduced and oxidised intracellular glutathione levels were quantified. Microvesiculation, percentage of haemolysis and haematologic parameters were also evaluated. Finally, morphological changes and membrane fluctuations were recorded using label-free digital holographic microscopy. RESULTS: The antioxidant power as well as the intracellular glutathione concentration first increased, reaching maximal values after one and two weeks, respectively. Irreversible morphological lesions appeared during week 5, where discocytes began to transform into transient echinocytes and finally spherocytes. At the same time, the microvesiculation and haemolysis started to rise exponentially. After six weeks (expiration date), intracellular glutathione was reduced by 25%, reflecting increasing oxidative stress. The membrane fluctuations showed decreased amplitudes during shape transition from discocytes to spherocytes. DISCUSSION: Various types of lesions accumulated at different chemical and cellular levels during storage, which could impact their in vivo recovery after transfusion. A marked effect was observed after four weeks of storage, which corroborates recent clinical data. The prolonged follow-up period allowed the capture of deep storage lesions. Interestingly, and as previously described, the severity of the changes differed among donors.


Asunto(s)
Conservación de la Sangre , Envejecimiento Eritrocítico , Eritrocitos/citología , Conservación de la Sangre/métodos , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Citratos/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Glucosa/metabolismo , Glutatión/metabolismo , Hemólisis , Humanos , Ácido Láctico/metabolismo , Oxidación-Reducción , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...