Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 180: 108899, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106668

RESUMEN

This work introduces the first atrial-specific in-silico human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) model, based on a set of phenotype-specific IKur,IKCa and IK1 membrane currents. This model is built on novel in-vitro experimental data recently published by some of the co-authors to simulate the paced action potential of matured atrial-like hiPSC-CMs. The model consists of a system of stiff ordinary differential equations depending on several parameters, which have been tuned by automatic optimization techniques to closely match selected experimental biomarkers. The new model effectively simulates the electronic in-vitro hiPSC-CMs maturation process, transitioning from an unstable depolarized membrane diastolic potential to a stable hyperpolarized resting potential, and exhibits spontaneous firing activity in unpaced conditions. Moreover, our model accurately reflects the experimental rate dependence data at different cycle length and demonstrates the expected response to a specific current blocker. This atrial-specific in-silico model provides a novel computational tool for electrophysiological studies of cardiac stem cells and their applications to drug evaluation and atrial fibrillation treatment.

2.
Nat Aging ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951692

RESUMEN

Accumulating senescent cells within tissues contribute to the progression of aging and age-related diseases. Botanical extracts, rich in phytoconstituents, present a useful resource for discovering therapies that could target senescence and thus improve healthspan. Here, we show that daily oral administration of a standardized extract of Salvia haenkei (Haenkenium (HK)) extended lifespan and healthspan of naturally aged mice. HK treatment inhibited age-induced inflammation, fibrosis and senescence markers across several tissues, as well as increased muscle strength and fur thickness compared with age-matched controls. We also found that HK treatment reduced acutely induced senescence by the chemotherapeutic agent doxorubicin, using p16LUC reporter mice. We profiled the constituent components of HK by mass spectrometry, and identified luteolin-the most concentrated flavonoid in HK-as a senomorphic compound. Mechanistically, by performing surface plasmon resonance and in situ proximity ligation assay, we found that luteolin disrupted the p16-CDK6 interaction. This work demonstrates that administration of HK promotes longevity in mice, possibly by modulating cellular senescence and by disrupting the p16-CDK6 interaction.

6.
J Thromb Haemost ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925490

RESUMEN

BACKGROUND: Scientific and clinical interest in extracellular vesicles (EVs) is growing. EVs that expose tissue factor (TF) bind factor VII/VIIa and can trigger coagulation. Highly procoagulant TF-exposing EVs are detectable in the circulation in various diseases, such as sepsis, COVID-19, or cancer. Many in-house and commercially available assays have been developed to measure EV-TF activity and antigen, but only a few studies have compared some of these assays. OBJECTIVES: The International Society on Thrombosis and Haemostasis Scientific and Standardization Committee Subcommittee on Vascular Biology initiated a multicenter study to compare the sensitivity, specificity, and reproducibility of these assays. METHODS: Platelet-depleted plasma samples were prepared from blood of healthy donors. The plasma samples were spiked either with EVs from human milk or EVs from TF-positive and TF-negative cell lines. Plasma was also prepared from whole human blood with or without lipopolysaccharide stimulation. Twenty-one laboratories measured EV-TF activity and antigen in the prepared samples using their own assays representing 18 functional and 9 antigenic assays. RESULTS: There was a large variability in the absolute values for the different EV-TF activity and antigen assays. Activity assays had higher specificity and sensitivity compared with antigen assays. In addition, there was a large intra-assay and interassay variability. Functional assays that used a blocking anti-TF antibody or immunocapture were the most specific and sensitive. Activity assays that used immunocapture had a lower coefficient of variation compared with assays that isolated EVs by high-speed centrifugation. CONCLUSION: Based on this multicenter study, we recommend measuring EV-TF using a functional assay in the presence of an anti-TF antibody.

7.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892376

RESUMEN

Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Animales , Enfermedades Cardiovasculares/terapia , Medicina Regenerativa/métodos , Células Madre/metabolismo , Células Madre/citología
8.
Adv Sci (Weinh) ; 11(29): e2400533, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822532

RESUMEN

Extracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating. Yet, the heterogeneous nature of EVs poses challenges, as proposed markers may not be as universally present as thought, raising concerns about biomarker screening reliability. This issue extends to EV-mimics, where conventional methods may lack applicability. Addressing these challenges, the study reports on Membrane Sensing Peptides (MSP) as pan-vesicular affinity ligands for both EVs and their non-canonical analogs, streamlining capture and phenotyping through Single Molecule Array (SiMoA). MSP ligands enable direct analysis of circulating EVs, eliminating the need for prior isolation. Demonstrating clinical translation, MSP technology detects an EV-associated epitope signature in serum and plasma, distinguishing myocardial infarction from stable angina. Additionally, MSP allow analysis of tetraspanin-lacking Red Blood Cell-derived EVs, overcoming limitations associated with antibody-based methods. Overall, the work underlines the value of MSP as complementary tools to antibodies, advancing EV analysis for clinical diagnostics and beyond, and marking the first-ever peptide-based application in SiMoA technology.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Péptidos , Vesículas Extracelulares/metabolismo , Humanos , Péptidos/metabolismo , Biomarcadores/metabolismo
9.
J Colloid Interface Sci ; 667: 338-349, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640653

RESUMEN

Recently, membrane devices and processes have been applied for the separation and concentration of subcellular components such as extracellular vesicles (EVs), which play a diagnostic and therapeutic role in many pathological conditions. However, the separation and isolation of specific EV populations from other components found in biological fluids is still challenging. Here, we developed a peptide-functionalized hollow fiber (HF) membrane module to achieve the separation and enrichment of highly pure EVs derived from the culture media of human cardiac progenitor cells. The strategy is based on the functionalization of PSf HF membrane module with BPt, a peptide sequence able to bind nanovesicles characterized by highly curved membranes. HF membranes were modified by a nanometric coating with a copoly azide polymer to limit non-specific interactions and to enable the conjugation with peptide ligand by click chemistry reaction. The BPt-functionalized module was integrated into a TFF process to facilitate the design, rationalization, and optimization of EV isolation. This integration combined size-based transport of species with specific membrane sensing ligands. The TFF integrated BPt-functionalized membrane module demonstrated the ability to selectively capture EVs with diameter < 200 nm into the lumen of fibers while effectively removing contaminants such as albumin. The captured and released EVs contain the common markers including CD63, CD81, CD9 and syntenin-1. Moreover, they maintained a round shape morphology and structural integrity highlighting that this approach enables EVs concentration and purification with low shear stress. Additionally, it achieved the removal of contaminants such as albumin with high reliability and reproducibility, reaching a removal of 93%.


Asunto(s)
Vesículas Extracelulares , Péptidos , Humanos , Vesículas Extracelulares/química , Péptidos/química , Péptidos/aislamiento & purificación , Membranas Artificiales , Tamaño de la Partícula , Propiedades de Superficie
10.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652092

RESUMEN

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Asunto(s)
Vesículas Extracelulares , Trasplante de Corazón , Macrófagos , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Ratas , Macrófagos/metabolismo , Masculino , Trasplante de Corazón/métodos , Glucosa/metabolismo , Miocardio/metabolismo , Modelos Animales de Enfermedad , Recuperación de la Función , Glucólisis , Corazón/fisiopatología , Corazón/fisiología
11.
Eur Heart J ; 45(18): 1602-1609, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38366191

RESUMEN

Despite improvements in clinical outcomes following acute myocardial infarction, mortality remains high, especially in patients with severely reduced left ventricular ejection fraction (LVEF <30%), emphasizing the need for effective cardioprotective strategies adjunctive to recanalization. Traditional cell therapy has shown equivocal success, shifting the focus to innovative cardioactive biologicals and cell mimetic therapies, particularly extracellular vesicles (EVs). EVs, as carriers of non-coding RNAs and other essential biomolecules, influence neighbouring and remote cell function in a paracrine manner. Compared to cell therapy, EVs possess several clinically advantageous traits, including stability, ease of storage (enabling off-the-shelf clinical readiness), and decreased immunogenicity. Allogeneic EVs from mesenchymal and/or cardiac stromal progenitor cells demonstrate safety and potential efficacy in preclinical settings. This review delves into the translational potential of EV-based therapeutic approaches, specifically highlighting findings from large-animal studies, and offers a synopsis of ongoing early-stage clinical trials in this domain.


Asunto(s)
Vesículas Extracelulares , Infarto del Miocardio , Infarto del Miocardio/terapia , Vesículas Extracelulares/trasplante , Vesículas Extracelulares/fisiología , Humanos , Animales
12.
J Extracell Biol ; 1(8): e53, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939054

RESUMEN

Despite their clinical potential, Extracellular Vesicles (EVs) struggle to take the scene as a preeminent source of biomarkers in liquid biopsy. Limitations in the use of EVs origin from their inherent complexity and heterogeneity and from the sensitivity demand in detecting low to very low abundant disease-specific sub-populations. Such need can be met by digital detection, namely capable to reach the single-molecule sensitivity. Here we set to compare, side by side, two digital detection platforms that have recently gained increasing importance in the field of EVs. The platforms, both commercially available, are based on the principles of the Single Particle Interferometric Reflectance Imaging Sensing (SP-IRIS) and the Single Molecule Array technology (SiMoA) respectively. Sensitivity in immune-phenotyping of a well characterized EV sample is reported, discussing possible applicative implications and rationales for alternative or complementary use of the two platforms in biomarker discovery or validation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...