Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109808, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38741710

RESUMEN

Mitochondrial dynamics is a process that balances fusion and fission events, the latter providing a mechanism for segregating dysfunctional mitochondria. Fission is controlled by the mitochondrial membrane potential (ΔΨm), optic atrophy 1 (OPA1) cleavage, and DRP1 recruitment. It is thought that this process is closely linked to the activity of the mitochondrial respiratory chain (MRC). However, we report here that MRC inhibition does not decrease ΔΨm nor increase fission, as evidenced by hyperconnected mitochondria. Conversely, blocking F0F1-ATP synthase activity induces fragmentation. We show that the F0F1-ATP synthase is sensing the inhibition of MRC activity by immediately promoting its reverse mode of action to hydrolyze matrix ATP and restoring ΔΨm, thus preventing fission. While this reverse mode is expected to be inhibited by the ATPase inhibitor ATPIF1, we show that this sensing is independent of this factor. We have unraveled an unexpected role of F0F1-ATP synthase in controlling the induction of fission by sensing and maintaining ΔΨm.

2.
Trends Mol Med ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38816303

RESUMEN

Faulkes et al. recently showed that naked mole-rats (NMRs) have a very distinctive cardiac gene expression profile among other African mole-rats, as well as metabolic variations that result from their chronic exposure to a hypoxic environment. These adaptations might underlie their resistance to cardiac ischemic injuries.

3.
Cell Rep ; 39(10): 110912, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35675769

RESUMEN

To elucidate the function of oxidative phosphorylation (OxPhos) during B cell differentiation, we employ CD23Cre-driven expression of the dominant-negative K320E mutant of the mitochondrial helicase Twinkle (DNT). DNT-expression depletes mitochondrial DNA during B cell maturation, reduces the abundance of respiratory chain protein subunits encoded by mitochondrial DNA, and, consequently, respiratory chain super-complexes in activated B cells. Whereas B cell development in DNT mice is normal, B cell proliferation, germinal centers, class switch to IgG, plasma cell maturation, and T cell-dependent as well as T cell-independent humoral immunity are diminished. DNT expression dampens OxPhos but increases glycolysis in lipopolysaccharide and B cell receptor-activated cells. Lipopolysaccharide-activated DNT-B cells exhibit altered metabolites of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle and a lower amount of phosphatidic acid. Consequently, mTORC1 activity and BLIMP1 induction are curtailed, whereas HIF1α is stabilized. Hence, mitochondrial DNA controls the metabolism of activated B cells via OxPhos to foster humoral immunity.


Asunto(s)
Ciclo del Ácido Cítrico , Inmunidad Humoral , Animales , Linfocitos B , ADN Mitocondrial/metabolismo , Glucólisis/genética , Lipopolisacáridos/metabolismo , Ratones , Respiración
4.
J Cachexia Sarcopenia Muscle ; 13(4): 2132-2145, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765148

RESUMEN

BACKGROUND: Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated. METHODS: We expressed a dominant-negative variant of the mitochondrial helicase, which induces mtDNA alterations, specifically in differentiated myofibres (K320Eskm mice) and MuSCs (K320Emsc mice), respectively, and investigated their impact on muscle structure and function by immunohistochemistry, analysis of mtDNA and respiratory chain content, muscle transcriptome and functional tests. RESULTS: K320Eskm mice at 24 months of age had higher levels of mtDNA deletions compared with controls in soleus (SOL, 0.07673% vs. 0.00015%, P = 0.0167), extensor digitorum longus (EDL, 0.0649 vs. 0.000925, P = 0.0015) and gastrocnemius (GAS, 0.09353 vs. 0.000425, P = 0.0004). K320Eskm mice revealed a progressive increase in the proportion of cytochrome c oxidase deficient (COX- ) fibres in skeletal muscle cross sections, reaching a maximum of 3.03%, 4.36%, 13.58%, and 17.08% in EDL, SOL, tibialis anterior (TA) and GAS, respectively. However, mice did not show accelerated loss of muscle mass, muscle strength or physical performance. Histological analyses revealed ragged red fibres but also stimulated regeneration, indicating activation of MuSCs. RNAseq demonstrated enhanced expression of genes associated with protein synthesis, but also degradation, as well as muscle fibre differentiation and cell proliferation. In contrast, 7 days after destruction by cardiotoxin, regenerating TA of K320Emsc mice showed 30% of COX- fibres. Notably, regenerated muscle showed dystrophic changes, increased fibrosis (2.5% vs. 1.6%, P = 0.0003), increased abundance of fat cells (2.76% vs. 0.23%, P = 0.0144) and reduced muscle mass (regenerated TA: 40.0 mg vs. 60.2 mg, P = 0.0171). In contrast to muscles from K320Eskm mice, freshly isolated MuSCs from aged K320Emsc mice were completely devoid of mtDNA alterations. However, after passaging, mtDNA copy number as well as respiratory chain subunits and p62 levels gradually decreased. CONCLUSIONS: Taken together, accumulation of large-scale mtDNA alterations in myofibres alone is not sufficient to cause sarcopenia. Expression of K320E-Twinkle is tolerated in quiescent MuSCs, but progressively leads to mtDNA and respiratory chain depletion upon activation, in vivo and in vitro, possibly caused by an increased mitochondrial removal. Altogether, our results suggest that the accumulation of mtDNA alterations in myofibres activates regeneration during aging, which leads to sarcopenia if such alterations have expanded in MuSCs as well.


Asunto(s)
Sarcopenia , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/patología , Regeneración , Sarcopenia/patología
5.
Mitochondrion ; 64: 19-26, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35189384

RESUMEN

Cancer/Testis Antigens (CTAs) represent a group of proteins whose expression under physiological conditions is restricted to testis but activated in many human cancers. Also, it was observed that co-expression of multiple CTAs worsens the patient prognosis. Five CTAs were reported acting in mitochondria and we recently reported 147 transcripts encoded by 67 CTAs encoding for proteins potentially targeted to mitochondria. Among them, we identified the two isoforms encoded by CT55 for whom the function is poorly understood. First, we found that patients with tumors expressing wild-type CT55 are associated with poor survival. Moreover, CT55 silencing decreases dramatically cell proliferation. Second, to investigate the role of CT55 on mitochondria, we first show that CT55 is localized to both mitochondria and endoplasmic reticulum (ER) due to the presence of an ambiguous N-terminal targeting signal. Then, we show that CT55 silencing decreases mtDNA copy number and delays mtDNA recovery after an acute depletion. Moreover, demethylation of CT55 promotor increases its expression, which in turn increases mtDNA copy number. Finally, we measured the mtDNA copy number in NCI-60 cell lines and screened for genes whose expression is strongly correlated to mtDNA amount. We identified CT55 as the second highest correlated hit. Also, we show that compared to siRNA scrambled control (siCtrl) treatment, CT55 specific siRNA (siCT55) treatment down-regulates aerobic respiration, indicating that CT55 sustains mitochondrial respiration. Altogether, these data show for first time that CT55 acts on mtDNA copy number, modulates mitochondrial activity to sustain cancer cell proliferation.


Asunto(s)
ADN Mitocondrial , Neoplasias , Proliferación Celular , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , ARN Interferente Pequeño , Testículo/metabolismo
7.
Mitochondrion ; 56: 73-81, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220498

RESUMEN

Cancer/Testis Antigens (CTAs) genes are expressed only during spermatogenesis and tumorigenesis. Both processes share common specific metabolic adaptation related to energy supply, with a glucose to lactate gradient, leading to changes in mitochondrial physiology paralleling CTAs expression. In this review, we address the role of CTAs in mitochondria (mitoCTAs), by reviewing all published data, and assessing the putative localization of CTAs by screening for the presence of a mitochondrial targeting sequence (MTS). We evidenced that among the 276 CTAs, five were already shown to interfere with mitochondrial activities and 67 display a potential MTS.


Asunto(s)
Antígenos de Neoplasias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Espermatogénesis , Antígenos de Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Mitocondrias/genética , Neoplasias/metabolismo , Testículo/metabolismo
8.
Sci Rep ; 10(1): 22037, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328493

RESUMEN

The formation of dentin and enamel matrix depends on reciprocal interactions between epithelial-mesenchymal cells. To assess the role of mitochondrial function in amelogenesis and dentinogenesis, we studied postnatal incisor development in K320E-TwinkleEpi mice. In these mice, a loss of mitochondrial DNA (mtDNA), followed by a severe defect in the oxidative phosphorylation system is induced specifically in Keratin 14 (K14+) expressing epithelial cells. Histochemical staining showed severe reduction of cytochrome c oxidase activity only in K14+ epithelial cells. In mutant incisors, H&E staining showed severe defects in the ameloblasts, in the epithelial cells of the stratum intermedium and the papillary cell layer, but also a disturbed odontoblast layer. The lack of amelogenin in the enamel matrix of K320E-TwinkleEpi mice indicated that defective ameloblasts are not able to form extracellular enamel matrix proteins. In comparison to control incisors, von Kossa staining showed enamel biomineralization defects and dentin matrix impairment. In mutant incisor, TUNEL staining and ultrastructural analyses revealed differentiation defects, while in hair follicle cells apoptosis is prevalent. We concluded that mitochondrial oxidative phosphorylation in epithelial cells of the developed incisor is required for Ca2+ homeostasis to regulate the formation of enamel matrix and induce the differentiation of ectomesenchymal cells into odontoblasts.


Asunto(s)
Esmalte Dental/metabolismo , Dentina/metabolismo , Células Epiteliales/metabolismo , Incisivo/crecimiento & desarrollo , Incisivo/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Amelogenina/metabolismo , Animales , Animales Recién Nacidos , Complejo IV de Transporte de Electrones/metabolismo , Incisivo/ultraestructura , Ratones Transgénicos , Mutación/genética , Succinato Deshidrogenasa/metabolismo
9.
PLoS Genet ; 16(12): e1009242, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315859

RESUMEN

Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy.


Asunto(s)
ADN Mitocondrial/genética , Eliminación de Gen , Duplicación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , ADN Mitocondrial/química , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Ratones , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/normas
10.
Invest Ophthalmol Vis Sci ; 61(12): 14, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33057669

RESUMEN

Purpose: The purpose of this study was to gain insights on the pathogenesis of chronic progressive external ophthalmoplegia, thus we investigated the vulnerability of five extra ocular muscles (EOMs) fiber types to pathogenic mitochondrial DNA deletions in a mouse model expressing a mutated mitochondrial helicase TWINKLE. Methods: Consecutive pairs of EOM sections were analyzed by cytochrome C oxidase (COX)/succinate dehydrogenase (SDH) assay and fiber type specific immunohistochemistry (type I, IIA, IIB, embryonic, and EOM-specific staining). Results: The mean average of COX deficient fibers (COX-) in the recti muscles of mutant mice was 1.04 ± 0.52% at 12 months and increased with age (7.01 ± 1.53% at 24 months). A significant proportion of these COX- fibers were of the fast-twitch, glycolytic type IIB (> 50% and > 35% total COX- fibers at 12 and 24 months, respectively), whereas embryonic myosin heavy chain-expressing fibers were almost completely spared. Furthermore, the proportion of COX- fibers in the type IIB-rich retractor bulbi muscle was > 2-fold higher compared to the M. recti at both 12 (2.6 ± 0.78%) and 24 months (20.85 ± 2.69%). Collectively, these results demonstrate a selective vulnerability of type IIB fibers to mitochondrial DNA (mtDNA) deletions in EOMs and retractor bulbi muscle. We also show that EOMs of mutant mice display histopathological abnormalities, including altered fiber type composition, increased fibrosis, ragged red fibers, and infiltration of mononucleated nonmuscle cells. Conclusions: Our results point to the existence of fiber type IIB-intrinsic factors and/or molecular mechanisms that predispose them to increased generation, clonal expansion, and detrimental effects of mtDNA deletions.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/patología , Fibras Musculares de Contracción Rápida/patología , Músculos Oculomotores/patología , Animales , Complejo IV de Transporte de Electrones/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/enzimología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Fibras Musculares de Contracción Rápida/enzimología , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/patología , Cadenas Pesadas de Miosina/metabolismo , Músculos Oculomotores/enzimología , Oftalmoplejía Externa Progresiva Crónica/etiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Succinato Deshidrogenasa/metabolismo
11.
J Neurosci ; 40(9): 1975-1986, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32005765

RESUMEN

Mitochondrial dysfunction is critically involved in Parkinson's disease, characterized by loss of dopaminergic neurons (DaNs) in the substantia nigra (SNc), whereas DaNs in the neighboring ventral tegmental area (VTA) are much less affected. In contrast to VTA, SNc DaNs engage calcium channels to generate action potentials, which lead to oxidant stress by yet unknown pathways. To determine the molecular mechanisms linking calcium load with selective cell death in the presence of mitochondrial deficiency, we analyzed the mitochondrial redox state and the mitochondrial membrane potential in mice of both sexes with genetically induced, severe mitochondrial dysfunction in DaNs (MitoPark mice), at the same time expressing a redox-sensitive GFP targeted to the mitochondrial matrix. Despite mitochondrial insufficiency in all DaNs, exclusively SNc neurons showed an oxidized redox-system, i.e., a low reduced/oxidized glutathione (GSH-GSSG) ratio. This was mimicked by cyanide, but not by rotenone or antimycin A, making the involvement of reactive oxygen species rather unlikely. Surprisingly, a high mitochondrial inner membrane potential was maintained in MitoPark SNc DaNs. Antagonizing calcium influx into the cell and into mitochondria, respectively, rescued the disturbed redox ratio and induced further hyperpolarization of the inner mitochondrial membrane. Our data therefore show that the constant calcium load in SNc DaNs is counterbalanced by a high mitochondrial inner membrane potential, even under conditions of severe mitochondrial dysfunction, but triggers a detrimental imbalance in the mitochondrial redox system, which will lead to neuron death. Our findings thus reveal a new mechanism, redox imbalance, which underlies the differential vulnerability of DaNs to mitochondrial defects.SIGNIFICANCE STATEMENT Parkinson's disease is characterized by the preferential degeneration of dopaminergic neurons (DaNs) of the substantia nigra pars compacta (SNc), resulting in the characteristic hypokinesia in patients. Ubiquitous pathological triggers cannot be responsible for the selective neuron loss. Here we show that mitochondrial impairment together with elevated calcium burden destabilize the mitochondrial antioxidant defense only in SNc DaNs, and thus promote the increased vulnerability of this neuron population.


Asunto(s)
Antioxidantes/metabolismo , Calcio/toxicidad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Animales , Calbindina 1/metabolismo , Muerte Celular , Cianuros/toxicidad , Femenino , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología
12.
J Cell Biol ; 218(6): 1853-1870, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31085560

RESUMEN

In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage-bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.


Asunto(s)
Cartílago/patología , Condrocitos/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Trastornos del Crecimiento/complicaciones , Placa de Crecimiento/patología , Enfermedades Mitocondriales/etiología , Animales , Cartílago/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Colágeno Tipo II/fisiología , ADN Helicasas/fisiología , Transporte de Electrón , Metabolismo Energético , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Placa de Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/fisiología , Transducción de Señal
13.
J Invest Dermatol ; 138(1): 132-140, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28867657

RESUMEN

Accumulation of large-scale mitochondrial DNA (mtDNA) deletions and chronic, subclinical inflammation are concomitant during skin aging, thus raising the question of a causal link. To approach this, we generated mice expressing a mutant mitochondrial helicase (K320E-TWINKLE) in the epidermis to accelerate the accumulation of mtDNA deletions in this skin compartment. Mice displayed low amounts of large-scale deletions and a dramatic depletion of mtDNA in the epidermis and showed macroscopic signs of severe skin inflammation. The mtDNA alterations led to an imbalanced stoichiometry of mitochondrial respiratory chain complexes, inducing a unique combination of cytokine expression, causing a severe inflammatory phenotype, with massive immune cell infiltrates already before birth. Altogether, these data unraveled a previously unknown link between an imbalanced stoichiometry of the mitochondrial respiratory chain complexes and skin inflammation and suggest that severe respiratory chain dysfunction, as observed in few cells leading to a mosaic in aged tissues, might be involved in the development of chronic subclinical inflammation.


Asunto(s)
ADN Helicasas/metabolismo , ADN Mitocondrial/metabolismo , Dermatitis/inmunología , Epidermis/inmunología , Mitocondrias/inmunología , Proteínas Mitocondriales/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , ADN Helicasas/genética , Dermatitis/genética , Dermatitis/patología , Modelos Animales de Enfermedad , Transporte de Electrón/genética , Transporte de Electrón/inmunología , Embrión de Mamíferos , Epidermis/patología , Femenino , Humanos , Queratinocitos/inmunología , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Cultivo Primario de Células , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/inmunología
14.
Biochem Biophys Res Commun ; 493(1): 604-610, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28867191

RESUMEN

BACKGROUND: During aging a mosaic of normal cells and cells with mitochondrial deficiency develops in various tissues including the heart. Whether this contributes to higher susceptibility for arrhythmia following myocardial infarction (MI) is unknown. METHODS AND RESULTS: Myocardial cryoinfarction was performed in 12-month-old transgenic mice with accelerated accumulation of deletions in mitochondrial DNA. Occurrence and pathogenesis of arrhythmia was investigated after two weeks. Holter-ECG recordings revealed higher rates of premature ventricular complexes (incidence > 10/24 h: 100% vs. 20%; p = 0.048) and more severe spontaneous arrhythmia during stress test in mutant mice with MI as compared to control mice with MI. Mice with mitochondrial dysfunction exhibited longer spontaneous AV-blocks (467 ± 26 ms vs. 377 ± 24 ms; p = 0.013), an increased probability for induction of ventricular tachycardia during in vivo electrophysiological investigation (22% vs. 9%; p = 0.044), and a reduced conduction velocity in the infarct borderzone (38.5 ± 0.5 cm/s vs. 55.3 ± 0.9 cm/s; p = 0.001). Furthermore, mutant mice exhibited a significant reduction of the phospho-Cx43/Cx43 ratio in right (0.59 ± 0.04 vs. 0.85 ± 0.01; p = 0.027) and left ventricular myocardium (0.72 ± 0.01 vs. 0.86 ± 0.02; p = 0.023). CONCLUSIONS: Aging-related cardiac mosaic respiratory chain dysfunction facilitates the occurrence of spontaneous and inducible cardiac arrhythmia after myocardial infarction and is associated with slowing of electrical impulse propagation in the infarct borderzone.


Asunto(s)
Envejecimiento , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Mitocondrias Cardíacas , Enfermedades Mitocondriales/fisiopatología , Infarto del Miocardio/fisiopatología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Mitocondriales/complicaciones , Infarto del Miocardio/complicaciones
15.
Neurology ; 87(22): 2290-2299, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27794108

RESUMEN

OBJECTIVE: To validate new mitochondrial myopathy serum biomarkers for diagnostic use. METHODS: We analyzed serum FGF21 (S-FGF21) and GDF15 from patients with (1) mitochondrial diseases and (2) nonmitochondrial disorders partially overlapping with mitochondrial disorder phenotypes. We (3) did a meta-analysis of S-FGF21 in mitochondrial disease and (4) analyzed S-Fgf21 and skeletal muscle Fgf21 expression in 6 mouse models with different muscle-manifesting mitochondrial dysfunctions. RESULTS: We report that S-FGF21 consistently increases in primary mitochondrial myopathy, especially in patients with mitochondrial translation defects or mitochondrial DNA (mtDNA) deletions (675 and 347 pg/mL, respectively; controls: 66 pg/mL, p < 0.0001 for both). This is corroborated in mice (mtDNA deletions 1,163 vs 379 pg/mL, p < 0.0001). However, patients and mice with structural respiratory chain subunit or assembly factor defects showed low induction (human 335 pg/mL, p < 0.05; mice 335 pg/mL, not significant). Overall specificities of FGF21 and GDF15 to find patients with mitochondrial myopathy were 89.3% vs 86.4%, and sensitivities 67.3% and 76.0%, respectively. However, GDF15 was increased also in a wide range of nonmitochondrial conditions. CONCLUSIONS: S-FGF21 is a specific biomarker for muscle-manifesting defects of mitochondrial translation, including mitochondrial transfer-RNA mutations and primary and secondary mtDNA deletions, the most common causes of mitochondrial disease. However, normal S-FGF21 does not exclude structural respiratory chain complex or assembly factor defects, important to acknowledge in diagnostics. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that elevated S-FGF21 accurately distinguishes patients with mitochondrial myopathies from patients with other conditions, and FGF21 and GDF15 mitochondrial myopathy from other myopathies.


Asunto(s)
Factores de Crecimiento de Fibroblastos/sangre , Factor 15 de Diferenciación de Crecimiento/sangre , Enfermedades Mitocondriales/sangre , Adulto , Anciano de 80 o más Años , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Enfermedades Mitocondriales/genética , Músculo Esquelético/metabolismo , Mutación , ARN de Hongos/sangre , Sensibilidad y Especificidad
16.
Cell Metab ; 21(5): 667-77, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25955204

RESUMEN

Aging is a progressive decline of body function, during which many tissues accumulate few cells with high levels of deleted mitochondrial DNA (mtDNA), leading to a defect of mitochondrial functions. Whether this mosaic mitochondrial deficiency contributes to organ dysfunction is unknown. To investigate this, we generated mice with an accelerated accumulation of mtDNA deletions in the myocardium, by expressing a dominant-negative mutant mitochondrial helicase. These animals accumulated few randomly distributed cardiomyocytes with compromised mitochondrial function, which led to spontaneous ventricular premature contractions and AV blocks at 18 months. These symptoms were not caused by a general mitochondrial dysfunction in the entire myocardium, and were not observed in mice at 12 months with significantly lower numbers of dysfunctional cells. Therefore, our results suggest that the disposition to arrhythmia typically found in the aged human heart might be due to the random accumulation of mtDNA deletions and the subsequent mosaic respiratory chain deficiency.


Asunto(s)
Envejecimiento , Arritmias Cardíacas/etiología , ADN Mitocondrial/genética , Mitocondrias/genética , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Oxígeno/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Respiración de la Célula , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Eliminación de Gen , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
17.
EMBO Mol Med ; 7(3): 275-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25643582

RESUMEN

Mitochondrial dysfunction and alterations in energy metabolism have been implicated in a variety of human diseases. Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Here, we provide a link between PHB2 deficiency and hyperactive insulin/IGF-1 signaling. Deletion of PHB2 in podocytes of mice, terminally differentiated cells at the kidney filtration barrier, caused progressive proteinuria, kidney failure, and death of the animals and resulted in hyperphosphorylation of S6 ribosomal protein (S6RP), a known mediator of the mTOR signaling pathway. Inhibition of the insulin/IGF-1 signaling system through genetic deletion of the insulin receptor alone or in combination with the IGF-1 receptor or treatment with rapamycin prevented hyperphosphorylation of S6RP without affecting the mitochondrial structural defect, alleviated renal disease, and delayed the onset of kidney failure in PHB2-deficient animals. Evidently, perturbation of insulin/IGF-1 receptor signaling contributes to tissue damage in mitochondrial disease, which may allow therapeutic intervention against a wide spectrum of diseases.


Asunto(s)
Insulina/metabolismo , Mitocondrias/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Insuficiencia Renal , Transducción de Señal , Animales , Eliminación de Gen , Ratones Endogámicos C57BL , Fosforilación , Prohibitinas , Procesamiento Proteico-Postraduccional , Receptor de Insulina/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína S6 Ribosómica/metabolismo
18.
J Invest Dermatol ; 135(3): 679-689, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25371971

RESUMEN

Here, we studied how epithelial energy metabolism impacts overall skin development by selectively deleting intraepithelial mtDNA in mice by ablating a key maintenance factor (Tfam(EKO)), which induces loss of function of the electron transport chain (ETC). Quantitative (immuno)histomorphometry demonstrated that Tfam(EKO) mice showed significantly reduced hair follicle (HF) density and morphogenesis, fewer intrafollicular keratin15+ epithelial progenitor cells, increased apoptosis, and reduced proliferation. Tfam(EKO) mice also displayed premature entry into (aborted) HF cycling by apoptosis-driven HF regression (catagen). Ultrastructurally, Tfam(EKO) mice exhibited severe HF dystrophy, pigmentary abnormalities, and telogen-like condensed dermal papillae. Epithelial HF progenitor cell differentiation (Plet1, Lrig1 Lef1, and ß-catenin), sebaceous gland development (adipophilin, Scd1, and oil red), and key mediators/markers of epithelial-mesenchymal interactions during skin morphogenesis (NCAM, versican, and alkaline phosphatase) were all severely altered in Tfam(EKO) mice. Moreover, the number of mast cells, major histocompatibility complex class II+, or CD11b+ immunocytes in the skin mesenchyme was increased, and essentially no subcutis developed. Therefore, in contrast to their epidermal counterparts, pilosebaceous unit stem cells depend on a functional ETC. Most importantly, our findings point toward a frontier in skin biology: the coupling of HF keratinocyte mitochondrial function with the epithelial-mesenchymal interactions that drive overall development of the skin and its appendages.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Folículo Piloso/crecimiento & desarrollo , Mitocondrias/fisiología , Morfogénesis/fisiología , Fenómenos Fisiológicos de la Piel , Animales , Apoptosis/fisiología , Proliferación Celular , ADN Mitocondrial/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Metabolismo Energético/fisiología , Epitelio/fisiología , Folículo Piloso/citología , Proteínas del Grupo de Alta Movilidad/deficiencia , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/fisiología , Ratones , Ratones Noqueados , Modelos Animales
19.
Brain ; 137(Pt 2): 354-65, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24163249

RESUMEN

Accumulation of mitochondrial DNA deletions is observed especially in dopaminergic neurons of the substantia nigra during ageing and even more in Parkinson's disease. The resulting mitochondrial dysfunction is suspected to play an important role in neurodegeneration. However, the molecular mechanisms involved in the preferential generation of mitochondrial DNA deletions in dopaminergic neurons are still unknown. To study this phenomenon, we developed novel polymerase chain reaction strategies to detect distinct mitochondrial DNA deletions and monitor their accumulation patterns. Applying these approaches in in vitro and in vivo models, we show that catecholamine metabolism drives the generation and accumulation of these mitochondrial DNA mutations. As in humans, age-related accumulation of mitochondrial DNA deletions is most prominent in dopaminergic areas of mouse brain and even higher in the catecholaminergic adrenal medulla. Dopamine treatment of terminally differentiated neuroblastoma cells, as well as stimulation of dopamine turnover in mice over-expressing monoamine oxidase B both induce multiple mitochondrial DNA deletions. Our results thus identify catecholamine metabolism as the driving force behind mitochondrial DNA deletions, probably being an important factor in the ageing-associated degeneration of dopaminergic neurons.


Asunto(s)
Catecolaminas/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Neuronas Dopaminérgicas/metabolismo , Eliminación de Gen , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos C57BL
20.
PLoS One ; 8(12): e82392, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349272

RESUMEN

To better understand molecular mechanisms regulating changes in metabolism, as observed e.g. in diabetes or neuronal disorders, the function of mitochondria needs to be precisely determined. The usual isolation methods such as differential centrifugation result in isolates of highly variable quality and quantity. To fulfill the need of a reproducible isolation method from solid tissues, which is suitable to handle parallel samples simultaneously, we developed a protocol based on anti-TOM22 (translocase of outer mitochondrial membrane 22 homolog) antibody-coupled magnetic beads. To measure oxygen consumption rate in isolated mitochondria from various mouse tissues, a traditional Clark electrode and the high-throughput XF Extracellular Flux Analyzer were used. Furthermore, Western blots, transmission electron microscopic and proteomic studies were performed to analyze the purity and integrity of the mitochondrial preparations. Mitochondrial fractions isolated from liver, brain and skeletal muscle by anti-TOM22 magnetic beads showed oxygen consumption capacities comparable to previously reported values and little contamination with other organelles. The purity and quality of isolated mitochondria using anti-TOM22 magnetic beads was compared to traditional differential centrifugation protocol in liver and the results indicated an obvious advantage of the magnetic beads method compared to the traditional differential centrifugation technique.


Asunto(s)
Fraccionamiento Celular/métodos , Fenómenos Magnéticos , Microesferas , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/inmunología , Especificidad de Órganos , Animales , Automatización , Centrifugación , Ratones , Mitocondrias/ultraestructura , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/ultraestructura , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Consumo de Oxígeno , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA