Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cardiovasc Res ; 61(4): 693-704, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-14985066

RESUMEN

OBJECTIVE: The antiapoptotic effect of p21(Waf1/Cip1/Sdi1) (p21) was examined in human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress (SS) or to the nitric oxide donor sodium nitroprusside (SNP) and in a mouse model of hindlimb ischemia. METHODS: In vitro: Cells were cultured without serum and in the presence of cobalt chloride to simulate hypoxia for 12 h (T0). Shear stress was applied to endothelial cells for additional 12 h. In vivo: Hindlimb ischemia was realized in mice by femoral artery ligation. SNP was acutely administered by subcutaneous injection or by Alzet osmotic pumps for a longer treatment. RESULTS: At T0, HUVEC were either exposed to SS (15 dyn/cm2/s(-1)), treated with SNP or kept in static condition (ST) for 1-12 h; after additional 12 h in ST, 30-35% of cells still alive at T0 had died. In this condition, both SS and SNP treatments markedly increased p21 levels and reduced apoptosis in HUVEC. Recombinant adenoviruses carrying p21 (AdCMV.p21) or antisense p21 (AdCMV.ASp21) cDNA revealed that AdCMV.p21-infected HUVEC were protected from death while AdCMV.ASp21 reduced SS- and SNP-dependent protection from apoptosis. In mice, apoptosis was detected in endothelial cells of ischemic hindlimbs as early as 8 h after femoral artery ligation. Treatment with SNP enhanced p21 expression and protected ischemic tissue from damage. Remarkably, direct in vivo injection of AdCMV.p21 significantly reduced the number of apoptotic nuclei in the presence of ischemia. CONCLUSIONS: The present study establishes that, under our experimental conditions, (a) p21 plays an important role in SS and nitric oxide antiapoptotic effect in vitro, and (b) p21 gene transfer prevents apoptosis in vitro and in vivo, following acute interruption of blood flow.


Asunto(s)
Ciclinas/farmacología , Células Endoteliales/efectos de los fármacos , Adenoviridae/genética , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , ADN sin Sentido/administración & dosificación , Vectores Genéticos/administración & dosificación , Miembro Posterior , Humanos , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Ratones Endogámicos , Ratones Desnudos , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Estrés Mecánico , Transducción Genética
2.
Cell ; 114(6): 763-76, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-14505575

RESUMEN

The notion of the adult heart as terminally differentiated organ without self-renewal potential has been undermined by the existence of a subpopulation of replicating myocytes in normal and pathological states. The origin and significance of these cells has remained obscure for lack of a proper biological context. We report the existence of Lin(-) c-kit(POS) cells with the properties of cardiac stem cells. They are self-renewing, clonogenic, and multipotent, giving rise to myocytes, smooth muscle, and endothelial cells. When injected into an ischemic heart, these cells or their clonal progeny reconstitute well-differentiated myocardium, formed by blood-carrying new vessels and myocytes with the characteristics of young cells, encompassing approximately 70% of the ventricle. Thus, the adult heart, like the brain, is mainly composed of terminally differentiated cells, but is not a terminally differentiated organ because it contains stem cells supporting its regeneration. The existence of these cells opens new opportunities for myocardial repair.


Asunto(s)
Diferenciación Celular/fisiología , Corazón/fisiología , Células Madre Multipotentes/citología , Miocardio/citología , Miocitos Cardíacos/citología , Regeneración/fisiología , Animales , Biomarcadores , Vasos Sanguíneos/citología , Vasos Sanguíneos/crecimiento & desarrollo , Linaje de la Célula/fisiología , Células Cultivadas , Células Clonales/citología , Células Clonales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Femenino , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/trasplante , Infarto del Miocardio/terapia , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Ratas , Ratas Endogámicas F344
3.
EMBO J ; 22(1): 131-9, 2003 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-12505991

RESUMEN

Cardiac failure is a frequent cause of death in the aging human population. Telomere attrition occurs with age, and is proposed to be causal for the aging process. To determine whether telomere shortening leads to a cardiac phenotype, we studied heart function in the telomerase knockout mouse, Terc-/-. We studied Terc-/- mice at the second, G2, and fifth, G5, generation. Telomere shortening in G2 and G5 Terc-/- mice was coupled with attenuation in cardiac myocyte proliferation, increased apoptosis and cardiac myocyte hypertrophy. On a single-cell basis, telomere shortening was coincidental with increased expression of p53, indicating the presence of dysfunctional telomeres in cardiac myocytes from G5 Terc-/- mice. The impairment in cell division, the enhanced cardiac myocyte death and cellular hypertrophy, are concomitant with ventricular dilation, thinning of the wall and cardiac dysfunction. Thus, inhibition of cardiac myocyte replication provoked by telomere shortening, results in de-compensated eccentric hypertrophy and heart failure in mice. Telomere shortening with age could also contribute to cardiac failure in humans, opening the possibility for new therapies.


Asunto(s)
Genes p53 , Insuficiencia Cardíaca/genética , Corazón/fisiología , Telomerasa/deficiencia , Telomerasa/genética , Telómero/genética , Proteína p53 Supresora de Tumor/genética , Vasodilatación/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Corazón/fisiopatología , Humanos , Ratones , Ratones Noqueados , Células Musculares/citología , Células Musculares/fisiología , Telomerasa/metabolismo , Telómero/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...