Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Plant Sci ; 29(3): 303-318, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37833181

RESUMEN

The green revolution successfully increased agricultural output in the early 1960s by relying primarily on three pillars: plant breeding, irrigation, and chemical fertilization. Today, the need to reduce the use of chemical fertilizers, water scarcity, and future environmental changes, together with a growing population, requires innovative strategies to adapt to a new context and prevent food shortages. Therefore, scientists from around the world are directing their efforts to breed crops for future environments to sustainably produce more nutritious food. Herein, we propose scientific avenues to be reinforced in selecting varieties, including crop wild relatives, either for monoculture or mixed cropping systems, taking advantage of plant-microbial interactions, while considering the diversity of organisms associated with crops and unlocking combinatorial nutritional stresses.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Productos Agrícolas/genética , Agricultura , Adaptación Fisiológica , Fertilizantes
3.
Plant Cell Environ ; 46(3): 962-974, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562125

RESUMEN

Rhizodeposition is the export of organic compounds from plant roots to the soil. Carbon allocation towards rhizodeposition has to be balanced with allocation for other physiological functions, which depend on both newly assimilated and stored nonstructural carbohydrate (NSC). To test whether the exudation of primary metabolites scales with plant NSC status, we studied diurnal dynamics of NSC and amino acid (AA) pools and fluxes within the plant and the rhizosphere. These diurnal dynamics were measured in the field and under hydroponic-controlled conditions. Further, C-limiting treatments offered further insight into the regulation of rhizodeposition. The exudation of primary metabolites fluctuated diurnally. The diurnal dynamics of soluble sugars (SS) and AA concentrations in tissues coincided with exudate pool fluctuations in the rhizosphere. SS and AA pools in the rhizosphere increased with NSC and AA pools in the roots. C starvation treatments offset the balance of exudates: AA exudate content in the rhizosphere significantly decreased while SS exudate content remained stable. Our results suggest that rhizodeposition is to some extent controlled by plant C:N status. We propose that SS exudation is less controlled than AA exudation because N assimilation depends on controlled C supply while SS exudation relies to a greater extent on passive diffusion mechanisms.


Asunto(s)
Carbono , Compuestos de Nitrógeno , Carbono/metabolismo , Compuestos de Nitrógeno/análisis , Compuestos de Nitrógeno/metabolismo , Pisum sativum/metabolismo , Rizosfera , Plantas/metabolismo , Aminoácidos/metabolismo , Raíces de Plantas/metabolismo , Suelo/química
4.
Plants (Basel) ; 10(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34579406

RESUMEN

Plants are sessile organisms whose survival depends on their strategy to cope with dynamic, stressful conditions. It is urgent to improve the ability of crops to adapt to recurrent stresses in order to alleviate the negative impacts on their productivity. Although our knowledge of plant adaptation to drought has been extensively enhanced during the last decades, recent studies have tackled plant responses to recurrent stresses. The present review synthesizes the major findings from studies addressing plant responses to multiple drought events, and demonstrates the ability of plants to memorize drought stress. Stress memory is described as a priming effect allowing a different response to a reiterated stress when compared to a single stress event. Here, by specifically focusing on water stress memory at the plant cycle level, we describe the different underlying processes at the molecular, physiological and morphological levels in crops as well as in the model species Arabidopsis thaliana. Moreover, a conceptual analysis framework is proposed to study drought stress memory. Finally, the essential role of interactions between plants and soil microorganisms is emphasized during reiterated stresses because their plasticity can play a key role in supporting overall plant resilience.

5.
Nat Ecol Evol ; 4(12): 1602-1611, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33020598

RESUMEN

Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to predict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem properties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem property levels.


Asunto(s)
Ecosistema , Plantas , Biodiversidad , Biomasa , Carbono
6.
Sci Total Environ ; 637-638: 892-906, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29763870

RESUMEN

Tebuconazole (TBZ) is a widely used triazole fungicide at EU level on cereals and vines. It is relatively persistent in soil where it is transformed to various transformation products (TPs) which might be environmentally relevant. We assessed the dissipation of TBZ in soil under contrasting incubation conditions (standard vs winter simulated) that are relevant to its application scheme, determined its transformation pathway using advanced analytical tools and 14C-labeled TBZ and assessed its soil microbial toxicity. Mineralization of 14C-triazole-ring-labeled TBZ was negligible but up to 11% of 14C-penyl-ring-labeled TBZ evolved as 14CO2 within 150 days of incubation. TBZ persistence increased at higher dose rates (×10 compared to the recommended agronomical dose ×1) and under winter simulated conditions compared to standard incubation conditions (at ×1 dose rate DT50 of 202 and 88 days, respectively). Non-target suspect screening enabled the detection of 22 TPs of TBZ, among which 17 were unknown. Mass spectrometry analysis led to the identification of 1-(4-chlorophenyl) ethanone, a novel TP of TBZ, the formation of which and decay in soil was determined by gas chromatography mass spectrometry. Three hypothetical transformation pathways of TBZ, all converging to 1H-1,2,4-triazole are proposed based on suspect screening. The ecotoxicological effect of TBZ and of its TPs was assessed by measuring by qPCR the abundance of the total bacteria and the relative abundance of 11 prokaryotic taxa and 4 functional groups. A transient impact of TBZ on the relative abundance of all prokaryotic taxa (except α-proteobacteria and Bacteroidetes) and one functional microbial group (pcaH-carrying microorganisms) was observed. However the direction of the effect (positive or negative) varied, and in certain cases, depended on the incubation conditions. Proteobacteria was the most responsive phylum to TBZ with recovery observed 20 days after treatment. The ecotoxicological effects on the soil microorganisms were not correlated with 1-(4-chlorophenyl) ethanone.


Asunto(s)
Fungicidas Industriales/análisis , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Triazoles/toxicidad , Estaciones del Año , Suelo , Contaminantes del Suelo/análisis , Triazoles/análisis
7.
ISME J ; 12(4): 1061-1071, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29476139

RESUMEN

Changes in frequency and amplitude of rain events, that is, precipitation patterns, result in different water conditions with soil depth, and likely affect plant growth and shape plant and soil microbial activity. Here, we used 18O stable isotope probing (SIP) to investigate bacterial and fungal communities that actively grew or not upon rewetting, at three different depths in soil mesocosms previously subjected to frequent or infrequent watering for 12 weeks (equal total water input). Phylogenetic marker genes for bacteria and fungi were sequenced after rewetting, and plant-soil microbial coupling documented by plant 13C-CO2 labeling. Soil depth, rather than precipitation pattern, was most influential in shaping microbial response to rewetting, and had differential effects on active and inactive bacterial and fungal communities. After rewetting, active bacterial communities were less rich, more even and phylogenetically related than the inactive, and reactivated throughout the soil profile. Active fungal communities after rewetting were less abundant and rich than the inactive. The coupling between plants and soil microbes decreased under infrequent watering in the top soil layer. We suggest that differences in fungal and bacterial abundance and relative activity could result in large effects on subsequent soil biogeochemical cycling.


Asunto(s)
Bacterias/clasificación , Hongos/clasificación , Microbiología del Suelo , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Filogenia , Desarrollo de la Planta , Lluvia , Suelo/química
8.
ISME J ; 11(1): 272-283, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27341455

RESUMEN

Soil ecosystems worldwide are subjected to marked modifications caused by anthropogenic disturbances and global climate change, resulting in microbial diversity loss and alteration of ecosystem functions. Despite the paucity of studies, restoration ecology provides an appropriate framework for testing the potential of manipulating soil microbial communities for the recovery of ecosystem functioning. We used a reciprocal transplant design in experimentally altered microbial communities to investigate the effectiveness of introducing microbial communities in degraded soil ecosystems to restore N-cycle functioning. Microbial diversity loss resulted in alternative compositional states associated with impaired N-cycle functioning. Here, the addition of complex microbial communities to these altered communities revealed a pivotal role of deterministic community assembly processes. The diversity of some alternative compositional states was successfully increased but without significant restoration of soil N-cycle functioning. However, in the most degraded alternative state, the introduction of new microbial communities caused an overall decrease in phylogenetic diversity and richness. The successful soil colonization by newly introduced species for some compositional states indicates that priority effects could be overridden when attempting to manipulate microbial communities for soil restoration. Altogether, our result showed consistent patterns within restoration treatments with minor idiosyncratic effects. This suggests the predominance of deterministic processes and the predictability of restoration trajectories, which could be used to guide the effective management of microbial community assemblages for ecological restoration of soils.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Clima , Cambio Climático , Ecosistema , Filogenia , Suelo/química
9.
Oecologia ; 181(3): 919-30, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27038993

RESUMEN

Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (1-16) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha(-1) a(-1)) on N2O and CH4 fluxes in a long-term field experiment. Soil N2O emissions, measured over 2 years using static chambers, decreased with species richness unless fertilizer was added. N2O emissions increased with fertilization and the fraction of legumes in plant communities. Soil CH4 uptake, a process driven by methanotrophic bacteria, decreased with plant species numbers, irrespective of fertilization. Using structural equation models, we related trace gas fluxes to soil moisture, soil inorganic N concentrations, nitrifying and denitrifying enzyme activity, and the abundance of ammonia oxidizers, nitrite oxidizers, and denitrifiers (quantified by real-time PCR of gene fragments amplified from microbial DNA in soil). These analyses indicated that plant species richness increased soil moisture, which in turn increased N cycling-related activities. Enhanced N cycling increased N2O emission and soil CH4 uptake, with the latter possibly caused by removal of inhibitory ammonium by nitrification. The moisture-related indirect effects were surpassed by direct, moisture-independent effects opposite in direction. Microbial gene abundances responded positively to fertilizer but not to plant species richness. The response patterns we found were statistically robust and highlight the potential of plant biodiversity to interact with climatic change through mechanisms unrelated to carbon storage and associated carbon dioxide removal.


Asunto(s)
Óxido Nitroso , Suelo/química , Atmósfera , Metano , Plantas
10.
PLoS One ; 11(3): e0151583, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27010947

RESUMEN

Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.


Asunto(s)
Dióxido de Carbono/análisis , Carbono/análisis , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Suelo/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Espectrometría de Masas , Hojas de la Planta/química , Plantas/química
11.
PLoS One ; 10(5): e0125678, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25938580

RESUMEN

BACKGROUND: Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. CONCLUSIONS/SIGNIFICANCE: Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes.


Asunto(s)
Biodiversidad , Ecosistema , Pradera , Plantas , Microbiología del Suelo , Suelo/química , Biomasa , Fertilizantes , Alemania
12.
ISME J ; 9(4): 946-57, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25314319

RESUMEN

A large soil CO2 pulse is associated with rewetting soils after the dry summer period under a Mediterranean-type climate, significantly contributing to grasslands' annual carbon budget. Rapid reactivation of soil heterotrophs and a pulse of available carbon are both required to fuel the CO2 pulse. Understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting changes in carbon cycling. Here, we investigated the effects of extending winter rainfall into the normally dry summer period on soil microbial response to a controlled rewetting event, by following the present (DNA-based) and potentially active (rRNA-based) soil bacterial and fungal communities in intact soil cores (from a California annual grassland) previously subjected to three different precipitation patterns over 4 months (full summer dry season, extended wet season and absent dry season). Phylogenetic marker genes for bacteria and fungi were sequenced before and after rewetting, and the abundance of these genes and transcripts was measured. After having experienced markedly different antecedent water conditions, the potentially active bacterial communities showed a consistent wet-up response. We found a significant positive relation between the extent of change in the structure of the potentially active bacterial community and the magnitude of the CO2 pulse upon rewetting dry soils. We suggest that the duration of severe dry summer conditions characteristic of the Mediterranean climate is important in conditioning the response potential of the soil microbial community to wet-up as well as in framing the magnitude of the associated CO2 pulse.


Asunto(s)
Bacterias/clasificación , Clima , Hongos/clasificación , Lluvia , Microbiología del Suelo , Bacterias/genética , Bacterias/aislamiento & purificación , Ciclo del Carbono , Dióxido de Carbono/análisis , Hongos/genética , Hongos/aislamiento & purificación , Filogenia , Estaciones del Año , Suelo/química
13.
Funct Plant Biol ; 41(8): 850-859, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32481039

RESUMEN

Environmental factors and physiological controls on photosynthesis influence the carbon isotopic signature of ecosystem respiration. Many ecosystem studies have used stable carbon isotopes to investigate environmental controls on plant carbon transfer from above- to belowground. However, a clear understanding of the internal mechanisms underlying time-lagged responses of carbon isotopic signatures in ecosystem respiration to environmental changes is still lacking. This study addressed plant physiological controls on the transfer time of recently assimilated carbon from assimilation to respiration. We produced a set of six wheat plants with varying physiological characteristics, by growing them under a wide range of nitrogen supply and soil water content levels under standardised conditions. The plants were pulse-labelled with 13C-CO2, and the isotopic signature of CO2 respired in the dark by plants and soil was monitored continuously over two days. Stomatal conductance (gs) was strongly related to the rate of transfer of recently assimilated carbon belowground. The higher gs, the faster newly assimilated carbon was allocated belowground and the faster it was respired in the soil. Our results suggest that carbon sink strength of plant tissues may be a major driver of transfer velocity of recently assimilated carbon to plant respiratory tissues and soil respiration.

14.
ISME J ; 7(11): 2229-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23823489

RESUMEN

The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured. Although bacterial community composition differed among sites, all sites shared a similar response pattern of the present and potentially active bacterial community to dry-down and wet-up. In contrast, the fungal community was not detectably different among sites, and was largely unaffected by dry-down, showing marked resistance to dessication. The potentially active bacterial community changed significantly as summer dry-down progressed, then returned to pre-dry-down composition within several hours of rewetting, displaying spectacular resilience. Upon rewetting, transcript copies of bacterial rpoB genes increased consistently, reflecting rapid activity resumption. Acidobacteria and Actinobacteria were the most abundant phyla present and potentially active, and showed the largest changes in relative abundance. The relative increase (Actinobacteria) and decrease (Acidobacteria) with dry-down, and the reverse responses to rewetting reflected a differential response, which was conserved at the phylum level and consistent across sites. These contrasting desiccation-related bacterial life-strategies suggest that predicted changes in precipitation patterns may affect soil nutrient and carbon cycling by differentially impacting activity patterns of microbial communities.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biodiversidad , Desecación , Hongos/fisiología , Microbiología del Suelo , Agua/metabolismo , Archaea/genética , Archaea/fisiología , Bacterias/clasificación , Bacterias/genética , California , Hongos/clasificación , Hongos/genética , Regulación Bacteriana de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 28S/genética , Estaciones del Año , Suelo/química , Agua/análisis
15.
ISME J ; 7(11): 2061-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23823491

RESUMEN

Microbes exist in a range of metabolic states (for example, dormant, active and growing) and analysis of ribosomal RNA (rRNA) is frequently employed to identify the 'active' fraction of microbes in environmental samples. While rRNA analyses are no longer commonly used to quantify a population's growth rate in mixed communities, due to rRNA concentration not scaling linearly with growth rate uniformly across taxa, rRNA analyses are still frequently used toward the more conservative goal of identifying populations that are currently active in a mixed community. Yet, evidence indicates that the general use of rRNA as a reliable indicator of metabolic state in microbial assemblages has serious limitations. This report highlights the complex and often contradictory relationships between rRNA, growth and activity. Potential mechanisms for confounding rRNA patterns are discussed, including differences in life histories, life strategies and non-growth activities. Ways in which rRNA data can be used for useful characterization of microbial assemblages are presented, along with questions to be addressed in future studies.


Asunto(s)
Bacterias/metabolismo , Ecología/métodos , Ecosistema , Microbiología Ambiental , Microbiota/genética , ARN Ribosómico/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Ecología/tendencias
16.
PLoS One ; 8(4): e61069, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23613785

RESUMEN

Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these) and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), the abundance of nitrifiers (bacterial and archaeal amoA gene number) and denitrifiers (nirK, nirS and nosZ gene number), and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species), though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification, whereas changes in microbial abundance play a major role for non-facultative activities such as nitrification.


Asunto(s)
Biodiversidad , Desnitrificación , Ecosistema , Nitrificación , Poaceae/microbiología , Microbiología del Suelo , Análisis de Varianza , Enzimas/metabolismo , Fabaceae/microbiología , Análisis de Regresión
17.
Oecologia ; 173(1): 223-37, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23386044

RESUMEN

In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.


Asunto(s)
Biodiversidad , Plantas/clasificación , Ciclo del Carbono , Ecosistema , Cadena Alimentaria , Modelos Lineales , Modelos Teóricos , Ciclo del Nitrógeno , Fenómenos Fisiológicos de las Plantas
18.
Oecologia ; 171(3): 705-17, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23297047

RESUMEN

Changes in frequency and intensity of drought events are anticipated in many areas of the world. In pasture, drought effects on soil nitrogen (N) cycling are spatially and temporally heterogeneous due to N redistribution by grazers. We studied soil N cycling responses to simulated summer drought and N deposition by grazers in a 3-year field experiment replicated in two grasslands differing in climate and management. Cattle urine and NH4NO3 application increased soil NH4(+) and NO3(-) concentrations, and more so under drought due to reduced plant uptake and reduced nitrification and denitrification. Drought effects were, however, reflected to a minor extent only in potential nitrification, denitrifying enzyme activity (DEA), and the abundance of functional genes characteristic of nitrifying (bacterial and archaeal amoA) and denitrifying (narG, nirS, nirK, nosZ) micro-organisms. N2O emissions, however, were much reduced under drought, suggesting that this effect was driven by environmental limitations rather than by changes in the activity potential or the size of the respective microbial communities. Cattle urine stimulated nitrification and, to a lesser extent, also DEA, but more so in the absence of drought. In contrast, NH4NO3 reduced the activity of nitrifiers and denitrifiers due to top-soil acidification. In summary, our data demonstrate that complex interactions between drought, mineral N availability, soil acidification, and plant nutrient uptake control soil N cycling and associated N2O emissions. These interactive effects differed between processes of the soil N cycle, suggesting that the spatial heterogeneity in pastures needs to be taken into account when predicting changes in N cycling and associated N2O emissions in a changing climate.


Asunto(s)
Cambio Climático , Sequías , Nitrógeno/metabolismo , Microbiología del Suelo , Animales , Archaea/genética , Bovinos , Clima , Desnitrificación , Ecosistema , Genes Bacterianos , Ciclo del Nitrógeno , Plantas , Suelo/química , Orina/química
19.
PLoS One ; 6(6): e20105, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21687708

RESUMEN

BACKGROUND: Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases. METHODOLOGY/PRINCIPAL FINDINGS: We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2) concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2)O) emissions in a grassland ecosystem. We examined the responses of soil N(2)O emissions, as well as the responses of the two main microbial processes contributing to soil N(2)O production--nitrification and denitrification--and of their main drivers. We show that the fire disturbance greatly increased soil N(2)O emissions over a three-year period, and that elevated CO(2) and enhanced nitrogen supply amplified fire effects on soil N(2)O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO(2) and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence.


Asunto(s)
Incendios , Efecto Invernadero , Internacionalidad , Óxido Nitroso/química , Suelo/química , Dióxido de Carbono/química , Precipitación Química , Desnitrificación , Nitrógeno/química , Microbiología del Suelo , Factores de Tiempo
20.
Mycorrhiza ; 21(8): 689-702, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21472448

RESUMEN

Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7 weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P. Isotope tracing ³³P and ¹³C) was used to quantify both the mycorrhizal benefits and the costs, respectively. G. intraradices supported greatest plant P acquisition and incurred high C costs, which lead to similar plant growth benefits as inoculation with G. claroideum, which was less efficient in supporting plant P acquisition, but also required less C. G. margarita imposed large C requirement on the host plant and provided negligible P uptake benefits. However, it did not significantly reduce plant growth due to sink strength stimulation of plant photosynthesis. A simple experimental system such as the one established here should allow quantification of mycorrhizal costs and benefits routinely on a large number of experimental units. This is necessary for rapid progress in assessment of C fluxes between the plants and different mycorrhizal fungi or fungal communities, and for understanding the dynamics between mutualism and parasitism in mycorrhizal symbioses.


Asunto(s)
Carbono/metabolismo , Hongos/fisiología , Medicago truncatula/fisiología , Micorrizas/fisiología , Fósforo/metabolismo , Simbiosis , Transporte Biológico , Medicago truncatula/microbiología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...