Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Biol Psychiatry ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823495

RESUMEN

BACKGROUND: Chronic low-grade inflammation is observed across mental disorders and is associated with difficult-to-treat-symptoms of anhedonia and functional brain changes - reflecting a potential transdiagnostic dimension. Previous investigations have focused on distinct illness categories in those with enduring illness, with few exploring inflammatory changes. We sought to identify an inflammatory signal and associated brain function underlying anhedonia among young people with recent onset psychosis (ROP) and recent onset depression (ROD). METHOD: Resting-state functional magnetic resonance imaging, inflammatory markers, and anhedonia symptoms were collected from N=108 (M age=26.2[SD 6.2]years; Female =50) participants with ROP (n=53) and ROD (n=55) from the EU-FP7-funded PRONIA study. Time-series were extracted using the Schaefer atlas, defining 100 cortical regions of interest. Using advanced multimodal machine learning, an inflammatory marker model and functional connectivity model were developed to classify an anhedonic group, compared to a normal hedonic group. RESULTS: A repeated nested cross-validation model using inflammatory markers classified normal hedonic and anhedonic ROP/ROD groups with a balanced accuracy (BAC) of 63.9%, and an area under the curve (AUC) of 0.61. The functional connectivity model produced a BAC of 55.2% and an AUC of 0.57. Anhedonic group assignment was driven by higher levels of Interleukin-6, S100B, and Interleukin-1 receptor antagonist, and lower levels of Interferon gamma, in addition to connectivity within the precuneus and posterior cingulate. CONCLUSION: We identified a potential transdiagnostic anhedonic subtype that was accounted for by an inflammatory profile and functional connectivity. Results have implications for anhedonia as an emerging transdiagnostic target across emerging mental disorders.

2.
Front Toxicol ; 6: 1335110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737195

RESUMEN

Introduction: In toxicology, steps are being taken towards more mechanism-focused and human relevant approaches to risk assessment, requiring new approaches and methods. Additionally, there is increasing emphasis by regulators on risk assessment of immunotoxicity. Methods: Here we present data from a peripheral blood mononuclear cell (PBMC) system whereby a varied set of stimuli, including those against the TCR and Toll-like receptors, enable readouts of cytokine and prostaglandin E2 (PGE2) production with monocyte, T cell and B cell viability, proliferation, and associated activation markers. In addition to results on the impact of the stimuli used, initial profiling data for a case study chemical, curcumin, is presented, illustrating how the system can be used to generate information on the impact of exogenous materials on three major constituent immune cell subsets for use in risk assessment and to direct follow-on studies. Results: The different stimuli drove distinct responses, not only in relation to the "quantity" of the response but also the "quality". Curcumin had a limited impact on the B cell parameters measured, with the stimuli used, and it was noted that in contrast to T cells where there was either no impact or a reduction in viability and proliferation with increasing concentration, for B cells there was a small but significant increase in both measurements at curcumin concentrations below 20 µM. Similarly, whilst expression of activation markers by T cells was reduced by the highest concentration of curcumin, they were increased in B cells. Curcumin only impacted the viability of stimulated monocytes at the highest concentration and had differential impact on different activation markers. Levels of all cytokines and PGE2 were reduced at higher concentrations. Discussion: Although the platform has certain limitations, it nevertheless enables assessment of healthy baseline monocyte, T-, and B-cell responses, and scrutiny of the impact of different stimuli to detect potential immune suppression or enhancement from exogenous materials. In the case of curcumin, a pattern of responses indicative of immune suppressive / anti-inflammatory effects was detected. It is an accessible, highly modifiable system that can be used to screen materials and guide further studies, providing a holistic, integrated picture of effects.

3.
Nat Commun ; 15(1): 1124, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321058

RESUMEN

The recovery of mitochondrial quality control (MQC) may bring innovative solutions for neuroprotection, while imposing a significant challenge given the need of holistic approaches to restore mitochondrial dynamics (fusion/fission) and turnover (mitophagy and biogenesis). In diabetic retinopathy, this is compounded by our lack of understanding of human retinal neurodegeneration, but also how MQC processes interact during disease progression. Here, we show that mitochondria hyperfusion is characteristic of retinal neurodegeneration in human and murine diabetes, blunting the homeostatic turnover of mitochondria and causing metabolic and neuro-inflammatory stress. By mimicking this mitochondrial remodelling in vitro, we ascertain that N6-furfuryladenosine enhances mitochondrial turnover and bioenergetics by relaxing hyperfusion in a controlled fashion. Oral administration of N6-furfuryladenosine enhances mitochondrial turnover in the diabetic mouse retina (Ins2Akita males), improving clinical correlates and conferring neuroprotection regardless of glycaemic status. Our findings provide translational insights for neuroprotection in the diabetic retina through the holistic recovery of MQC.


Asunto(s)
Adenosina , Diabetes Mellitus Experimental , Cinetina , Dinámicas Mitocondriales , Masculino , Ratones , Humanos , Animales , Neuroprotección , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Mitocondrias/metabolismo
4.
MAbs ; 16(1): 2300155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241085

RESUMEN

Rozanolixizumab is a humanized anti-neonatal Fc receptor (FcRn) monoclonal antibody (mAb) of the immunoglobulin G4 (IgG4) sub-class, currently in clinical development for the treatment of IgG autoantibody-driven diseases. This format is frequently used for therapeutic mAbs due to its intrinsic lower affinity for Fc gamma receptors (FcγR) and lack of C1q engagement. However, with growing evidence suggesting that no Fc-containing agent is truly "silent" in this respect, we explored the engagement of FcγRs and potential functional consequences with rozanolixizumab. In the study presented here, rozanolixizumab was shown to bind to FcγRs in both protein-protein and cell-based assays, and the kinetic data were broadly as expected based on published data for an IgG4 mAb. Rozanolixizumab was also able to mediate antibody bipolar bridging (ABB), a phenomenon that led to a reduction of labeled FcγRI from the surface of human macrophages in an FcRn-dependent manner. However, the presence of exogenous human IgG, even at low concentrations, was able to prevent both binding and ABB events. Furthermore, data from in vitro experiments using relevant human cell types that express both FcRn and FcγRI indicated no evidence for functional sequelae in relation to cellular activation events (e.g., intracellular signaling, cytokine production) upon either FcRn or FcγR binding of rozanolixizumab. These data raise important questions about whether therapeutic antagonistic mAbs like rozanolixizumab would necessarily engage FcγRs at doses typically administered to patients in the clinic, and hence challenge the relevance and interpretation of in vitro assays performed in the absence of competing IgG.


Asunto(s)
Receptores Fc , Receptores de IgG , Humanos , Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales , Inmunoglobulina G , Antígenos de Histocompatibilidad Clase I
5.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123151

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
6.
Trials ; 24(1): 646, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803384

RESUMEN

BACKGROUND: Depressive episodes are common after first-episode psychosis (FEP), affecting more than 40% of people, adding to individual burden, poor outcomes, and healthcare costs. If the risks of developing depression were lower, this could have a beneficial effect on morbidity and mortality, as well as improving outcomes. Sertraline is a selective serotonin reuptake inhibitor and a common first-line medication for the treatment of depression in adults. It has been shown to be safe when co-prescribed with antipsychotic medication, and there is evidence that it is an effective treatment for depression in established schizophrenia. We present a protocol for a multi-centre, double-blind, randomised, placebo-controlled clinical trial called ADEPP that aims to investigate the efficacy and cost-effectiveness of sertraline in preventing depression after FEP. METHODS: The recruitment target is 452 participants between the ages of 18 and 65 years who are within 12 months of treatment initiation for FEP. Having provided informed consent, participants will be randomised to receive either 50 mg of sertraline daily or matched placebo for 6 months, in addition to treatment as usual. The primary outcome measure will be a comparison of the number of new cases of depression between the treatment and placebo arms over the 6-month intervention phase. Secondary outcomes include suicidal behaviour, anxiety, rates of relapse, functional outcome, quality of life, and resource use. DISCUSSION: The ADEPP trial will test whether the addition of sertraline following FEP is a clinically useful, acceptable, and cost-effective way of improving outcomes following FEP. TRIAL REGISTRATION: ISRCTN12682719 registration date 24/11/2020.


Asunto(s)
Trastornos Psicóticos , Sertralina , Adulto , Humanos , Lactante , Preescolar , Sertralina/efectos adversos , Depresión/prevención & control , Calidad de Vida , Recurrencia Local de Neoplasia/tratamiento farmacológico , Antidepresivos/uso terapéutico , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/tratamiento farmacológico , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
7.
Transl Psychiatry ; 13(1): 297, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723153

RESUMEN

Attempts to delineate an immune subtype of schizophrenia have not yet led to the clear identification of potential treatment targets. An unbiased informatic approach at the level of individual immune cytokines and symptoms may reveal organisational structures underlying heterogeneity in schizophrenia, and potential for future therapies. The aim was to determine the network and relative influence of pro- and anti-inflammatory cytokines on depressive, positive, and negative symptoms. We further aimed to determine the effect of exposure to minocycline or placebo for 6 months on cytokine-symptom network connectivity and structure. Network analysis was applied to baseline and 6-month data from the large multi-center BeneMin trial of minocycline (N = 207) in schizophrenia. Pro-inflammatory cytokines IL-6, TNF-α, and IFN-γ had the greatest influence in the inflammatory network and were associated with depressive symptoms and suspiciousness at baseline. At 6 months, the placebo group network connectivity was 57% stronger than the minocycline group, due to significantly greater influence of TNF-α, early wakening, and pathological guilt. IL-6 and its downstream impact on TNF-α, and IFN-γ, could offer novel targets for treatment if offered at the relevant phenotypic profile including those with depression. Future targeted experimental studies of immune-based therapies are now needed.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Minociclina/uso terapéutico , Factor de Necrosis Tumoral alfa , Interleucina-6 , Inflamación/tratamiento farmacológico , Citocinas
8.
Brain Behav Immun ; 113: 166-175, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37423513

RESUMEN

OBJECTIVE: Immune system dysfunction is hypothesised to contribute to structural brain changes through aberrant synaptic pruning in schizophrenia. However, evidence is mixed and there is a lack of evidence of inflammation and its effect on grey matter volume (GMV) in patients. We hypothesised that inflammatory subgroups can be identified and that the subgroups will show distinct neuroanatomical and neurocognitive profiles. METHODS: The total sample consisted of 1067 participants (chronic patients with schizophrenia n = 467 and healthy controls (HCs) n = 600) from the Australia Schizophrenia Research Bank (ASRB) dataset, together with 218 recent-onset patients with schizophrenia from the external Benefit of Minocycline on Negative Symptoms of Psychosis: Extent and Mechanism (BeneMin) dataset. HYDRA (HeterogeneitY through DiscRiminant Analysis) was used to separate schizophrenia from HC and define disease-related subgroups based on inflammatory markers. Voxel-based morphometry and inferential statistics were used to explore GMV alterations and neurocognitive deficits in these subgroups. RESULTS: An optimal clustering solution revealed five main schizophrenia groups separable from HC: Low Inflammation, Elevated CRP, Elevated IL-6/IL-8, Elevated IFN-γ, and Elevated IL-10 with an adjusted Rand index of 0.573. When compared with the healthy controls, the IL-6/IL-8 cluster showed the most widespread, including the anterior cingulate, GMV reduction. The IFN-γ inflammation cluster showed the least GMV reduction and impairment of cognitive performance. The CRP and the Low Inflammation clusters dominated in the younger external dataset. CONCLUSIONS: Inflammation in schizophrenia may not be merely a case of low vs high, but rather there are pluripotent, heterogeneous mechanisms at play which could be reliably identified based on accessible, peripheral measures. This could inform the successful development of targeted interventions.


Asunto(s)
Esquizofrenia , Humanos , Interleucina-6 , Interleucina-8 , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Sustancia Gris , Aprendizaje Automático Supervisado
9.
BMJ Open ; 13(3): e067944, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36963796

RESUMEN

INTRODUCTION: Evidence suggests a potentially causal role of interleukin 6 (IL-6), a pleiotropic cytokine that generally promotes inflammation, in the pathogenesis of psychosis. However, no interventional studies in patients with psychosis, stratified using inflammatory markers, have been conducted to assess the therapeutic potential of targeting IL-6 in psychosis and to elucidate potential mechanism of effect. Tocilizumab is a humanised monoclonal antibody targeting the IL-6 receptor to inhibit IL-6 signalling, licensed in the UK for treatment of rheumatoid arthritis. The primary objective of this study is to test whether IL-6 contributes to the pathogenesis of first episode psychosis and to examine potential mechanisms by which IL-6 affects psychotic symptoms. A secondary objective is to examine characteristics of inflammation-associated psychosis. METHODS AND ANALYSIS: A proof-of-concept study employing a randomised, parallel-group, double-blind, placebo-controlled design testing the effect of IL-6 inhibition on anhedonia in patients with psychosis. Approximately 60 participants with a diagnosis of schizophrenia and related psychotic disorders (ICD-10 codes F20, F22, F25, F28, F29) with evidence of low-grade inflammation (IL-6≥0.7 pg/mL) will receive either one intravenous infusion of tocilizumab (4.0 mg/kg; max 800 mg) or normal saline. Psychiatric measures and blood samples will be collected at baseline, 7, 14 and 28 days post infusion. Cognitive and neuroimaging data will be collected at baseline and 14 days post infusion. In addition, approximately 30 patients with psychosis without evidence of inflammation (IL-6<0.7 pg/mL) and 30 matched healthy controls will be recruited to complete identical baseline assessments to allow for comparison of the characteristic features of inflammation-associated psychosis. ETHICS AND DISSEMINATION: The study is sponsored by the University of Bristol and has been approved by the Cambridge East Research Ethics Committee (reference: 22/EE/0010; IRAS project ID: 301682). Study findings will be published in peer-review journals. Findings will also be disseminated by scientific presentation and other means. TRIAL REGISTRATION NUMBER: ISRCTN23256704.


Asunto(s)
Interleucina-6 , Trastornos Psicóticos , Humanos , Método Doble Ciego , Inflamación/tratamiento farmacológico , Trastornos Psicóticos/psicología , Resultado del Tratamiento , Prueba de Estudio Conceptual
10.
Front Pharmacol ; 13: 983853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110516

RESUMEN

Background: Acute and chronic neurodegenerative diseases represent an immense socioeconomic burden that drives the need for new disease modifying drugs. Common pathogenic mechanisms in these diseases are evident, suggesting that a platform neuroprotective therapy may offer effective treatments. Here we present evidence for the mode of pharmacological action of a novel neuroprotective low molecular weight dextran sulphate drug called ILB®. The working hypothesis was that ILB® acts via the activation of heparin-binding growth factors (HBGF). Methods: Pre-clinical and clinical (healthy people and patients with ALS) in vitro and in vivo studies evaluated the mode of action of ILB®. In vitro binding studies, functional assays and gene expression analyses were followed by the assessment of the drug effects in an animal model of severe traumatic brain injury (sTBI) using gene expression studies followed by functional analysis. Clinical data, to assess the hypothesized mode of action, are also presented from early phase clinical trials. Results: ILB® lengthened APTT time, acted as a competitive inhibitor for HGF-Glypican-3 binding, effected pulse release of heparin-binding growth factors (HBGF) into the circulation and modulated growth factor signaling pathways. Gene expression analysis demonstrated substantial similarities in the functional dysregulation induced by sTBI and various human neurodegenerative conditions and supported a cascading effect of ILB® on growth factor activation, followed by gene expression changes with profound beneficial effect on molecular and cellular functions affected by these diseases. The transcriptional signature of ILB® relevant to cell survival, inflammation, glutamate signaling, metabolism and synaptogenesis, are consistent with the activation of neuroprotective growth factors as was the ability of ILB® to elevate circulating levels of HGF in animal models and humans. Conclusion: ILB® releases, redistributes and modulates the bioactivity of HBGF that target disease compromised nervous tissues to initiate a cascade of transcriptional, metabolic and immunological effects that control glutamate toxicity, normalize tissue bioenergetics, and resolve inflammation to improve tissue function. This unique mechanism of action mobilizes and modulates naturally occurring tissue repair mechanisms to restore cellular homeostasis and function. The identified pharmacological impact of ILB® supports the potential to treat various acute and chronic neurodegenerative disease, including sTBI and ALS.

11.
Biosens Bioelectron ; 216: 114623, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36029662

RESUMEN

Near-infrared (NIR) chemical fluorophores are promising tools for in-vivo imaging in real time but often succumb to rapid photodegradation. Indocyanine green (ICG) is the only NIR dye with regulatory approval for ocular imaging in humans; however, ICG, when employed for applications such as labelling immune cells, has limited sensitivity and does not allow precise detection of specific inflammatory events, for example leukocyte recruitment during uveitic flare-ups. We investigated the potential use of photostable novel triazole NIR cyanine (TNC) dyes for detecting and characterising activated T-cell activity within the eye. Three TNC dyes were evaluated for ocular cytotoxicity in-vitro using a MTT assay and optimised concentrations for intraocular detection within ex-vivo porcine eyes after topical application or intracameral injections of the dyes. TNC labelled T-cell tracking experiments and mechanistic studies were also performed in-vitro. TNC-1 and TNC-2 dyes exhibited greater fluorescence intensity than ICG at 10 µM, whereas TNC-3 was only detectable at 100 µM within the porcine eye. TNC dyes did not demonstrate any ocular cell toxicity at working concentrations of 10 µM. CD4+T-cells labelled with TNC-1 or TNC-2 were detected within the porcine eye, with TNC-1 being brighter than TNC-2. Detection of TNC-1 and TNC-2 into CD4+T-cells was prevented by prior incubation with dynole 34-2 (50 µM), suggesting active uptake of these dyes via dynamin-dependent processes. The present study provides evidence that TNC dyes are suitable to detect activated CD4+T-cells within the eye with potential as a diagnostic marker for ocular inflammatory diseases.


Asunto(s)
Técnicas Biosensibles , Verde de Indocianina , Animales , Colorantes Fluorescentes/metabolismo , Humanos , Verde de Indocianina/metabolismo , Inflamación/inducido químicamente , Imagen Óptica/métodos , Porcinos , Triazoles
12.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955592

RESUMEN

In a previous study, we found that administration of ILB®, a new low molecular weight dextran sulphate, significantly improved mitochondrial functions and energy metabolism, as well as decreased oxidative/nitrosative stress, of brain tissue of rats exposed to severe traumatic brain injury (sTBI), induced by the closed-head weight-drop model of diffused TBI. Using aliquots of deproteinized brain tissue of the same animals of this former study, we here determined the concentrations of 24 amino acids of control rats, untreated sTBI rats (sacrificed at 2 and 7 days post-injury) and sTBI rats receiving a subcutaneous ILB® administration (at the dose levels of 1, 5 and 15 mg/kg b.w.) 30 min post-impact (sacrificed at 2 and 7 days post-injury). Additionally, in a different set of experiments, new groups of control rats, untreated sTBI rats and ILB®-treated rats (administered 30 min after sTBI at the dose levels of 1 or 5 mg/kg b.w.) were studied for their neurocognitive functions (anxiety, locomotor capacities, short- and long-term memory) at 7 days after the induction of sTBI. Compared to untreated sTBI animals, ILB® significantly decreased whole brain glutamate (normalizing the glutamate/glutamine ratio), glycine, serine and γ-aminobutyric acid. Furthermore, ILB® administration restored arginine metabolism (preventing nitrosative stress), levels of amino acids involved in methylation reactions (methionine, L-cystathionine, S-adenosylhomocysteine), and N-acetylaspartate homeostasis. The macroscopic evidences of the beneficial effects on brain metabolism induced by ILB® were the relevant improvement in neurocognitive functions of the group of animals treated with ILB® 5 mg/kg b.w., compared to the marked cognitive decline measured in untreated sTBI animals. These results demonstrate that ILB® administration 30 min after sTBI prevents glutamate excitotoxicity and normalizes levels of amino acids involved in crucial brain metabolic functions. The ameliorations of amino acid metabolism, mitochondrial functions and energy metabolism in ILB®-treated rats exposed to sTBI produced significant improvement in neurocognitive functions, reinforcing the concept that ILB® is a new effective therapeutic tool for the treatment of sTBI, worth being tested in the clinical setting.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sulfatos , Aminoácidos/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Sulfato de Dextran , Ácido Glutámico , Homeostasis , Peso Molecular , Ratas
13.
Biol Psychiatry ; 92(7): 552-562, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35717212

RESUMEN

BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP) based on structural neuroimaging data. We hypothesized that these transdiagnostic clusters would identify patients with poor outcome and allow more accurate prediction of symptomatic remission than traditional diagnostic structures. METHODS: HYDRA (Heterogeneity through Discriminant Analysis) was trained on whole-brain volumetric measures from 577 participants from the discovery sample of the multisite PRONIA study to identify neurobiologically driven clusters, which were then externally validated in the PRONIA replication sample (n = 404) and three datasets of chronic samples (Centre for Biomedical Research Excellence, n = 146; Mind Clinical Imaging Consortium, n = 202; Munich, n = 470). RESULTS: The optimal clustering solution was two transdiagnostic clusters (cluster 1: n = 153, 67 ROP, 86 ROD; cluster 2: n = 149, 88 ROP, 61 ROD; adjusted Rand index = 0.618). The two clusters contained both patients with ROP and patients with ROD. One cluster had widespread gray matter volume deficits and more positive, negative, and functional deficits (impaired cluster), and one cluster revealed a more preserved neuroanatomical signature and more core depressive symptomatology (preserved cluster). The clustering solution was internally and externally validated and assessed for clinical utility in predicting 9-month symptomatic remission, outperforming traditional diagnostic structures. CONCLUSIONS: We identified two transdiagnostic neuroanatomically informed clusters that are clinically and biologically distinct, challenging current diagnostic boundaries in recent-onset mental health disorders. These results may aid understanding of the etiology of poor outcome patients transdiagnostically and improve development of stratified treatments.


Asunto(s)
Depresión , Trastornos Psicóticos , Sustancia Gris/diagnóstico por imagen , Humanos , Neuroimagen , Fenotipo , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/psicología
14.
PLoS One ; 17(5): e0267183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35613082

RESUMEN

INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is an invariably lethal progressive disease, causing degeneration of neurons and muscle. No current treatment halts or reverses disease advance. This single arm, open label, clinical trial in patients with ALS investigated the safety and tolerability of a novel modified low molecular weight dextran sulphate (LMW-DS, named ILB®) previously proven safe for use in healthy volunteers and shown to exert potent neurotrophic effects in pre-clinical studies. Secondary endpoints relate to efficacy and exploratory biomarkers. METHODS: Thirteen patients with ALS were treated with 5 weekly subcutaneous injections of ILB®. Safety and efficacy outcome measures were recorded weekly during treatment and at regular intervals for a further 70 days. Functional and laboratory biomarkers were assessed before, during and after treatment. RESULTS: No deaths, serious adverse events or participant withdrawals occurred during or after ILB® treatment and no significant drug-related changes in blood safety markers were evident, demonstrating safety and tolerability of the drug in this cohort of patients with ALS. The PK of ILB® in patients with ALS was similar to that seen in healthy controls. The ILB® injection elicited a transient elevation of plasma Hepatocyte Growth Factor, a neurotrophic and myogenic growth factor. Following the ILB® injections patients reported increased vitality, decreased spasticity and increased mobility. The ALSFRS-R rating improved from 36.31 ± 6.66 to 38.77 ± 6.44 and the Norris rating also improved from 70.61 ± 13.91 to 77.85 ± 14.24 by Day 36. The improvement of functions was associated with a decrease in muscle atrophy biomarkers. These therapeutic benefits decreased 3-4 weeks after the last dosage. CONCLUSIONS: This pilot clinical study demonstrates safety and tolerability of ILB® in patients with ALS. The exploratory biomarker and functional measures must be cautiously interpreted but suggest clinical benefit and have a bearing on the mechanism of action of ILB®. The results support the drug's potential as the first disease modifying treatment for patients with ALS. TRIAL REGISTRATION: EudraCT 2017-005065-47.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Estudios de Cohortes , Humanos , Evaluación de Resultado en la Atención de Salud
15.
JAMA Psychiatry ; 79(5): 498-507, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35353173

RESUMEN

Importance: Previous in vitro and postmortem research suggests that inflammation may lead to structural brain changes via activation of microglia and/or astrocytic dysfunction in a range of neuropsychiatric disorders. Objective: To investigate the relationship between inflammation and changes in brain structures in vivo and to explore a transcriptome-driven functional basis with relevance to mental illness. Design, Setting, and Participants: This study used multistage linked analyses, including mendelian randomization (MR), gene expression correlation, and connectivity analyses. A total of 20 688 participants in the UK Biobank, which includes clinical, genomic, and neuroimaging data, and 6 postmortem brains from neurotypical individuals in the Allen Human Brain Atlas (AHBA), including RNA microarray data. Data were extracted in February 2021 and analyzed between March and October 2021. Exposures: Genetic variants regulating levels and activity of circulating interleukin 1 (IL-1), IL-2, IL-6, C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF) were used as exposures in MR analyses. Main Outcomes and Measures: Brain imaging measures, including gray matter volume (GMV) and cortical thickness (CT), were used as outcomes. Associations were considered significant at a multiple testing-corrected threshold of P < 1.1 × 10-4. Differential gene expression in AHBA data was modeled in brain regions mapped to areas significant in MR analyses; genes were tested for biological and disease overrepresentation in annotation databases and for connectivity in protein-protein interaction networks. Results: Of 20 688 participants in the UK Biobank sample, 10 828 (52.3%) were female, and the mean (SD) age was 55.5 (7.5) years. In the UK Biobank sample, genetically predicted levels of IL-6 were associated with GMV in the middle temporal cortex (z score, 5.76; P = 8.39 × 10-9), inferior temporal (z score, 3.38; P = 7.20 × 10-5), fusiform (z score, 4.70; P = 2.60 × 10-7), and frontal (z score, -3.59; P = 3.30 × 10-5) cortex together with CT in the superior frontal region (z score, -5.11; P = 3.22 × 10-7). No significant associations were found for IL-1, IL-2, CRP, or BDNF after correction for multiple comparison. In the AHBA sample, 5 of 6 participants (83%) were male, and the mean (SD) age was 42.5 (13.4) years. Brain-wide coexpression analysis showed a highly interconnected network of genes preferentially expressed in the middle temporal gyrus (MTG), which further formed a highly connected protein-protein interaction network with IL-6 (enrichment test of expected vs observed network given the prevalence and degree of interactions in the STRING database: 43 nodes/30 edges observed vs 8 edges expected; mean node degree, 1.4; genome-wide significance, P = 4.54 × 10-9). MTG differentially expressed genes that were functionally enriched for biological processes in schizophrenia, autism spectrum disorder, and epilepsy. Conclusions and Relevance: In this study, genetically determined IL-6 was associated with brain structure and potentially affects areas implicated in developmental neuropsychiatric disorders, including schizophrenia and autism.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Adulto , Encéfalo/diagnóstico por imagen , Factor Neurotrófico Derivado del Encéfalo/genética , Proteína C-Reactiva/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inflamación/epidemiología , Inflamación/genética , Interleucina-1/genética , Interleucina-2/genética , Interleucina-6/genética , Imagen por Resonancia Magnética , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Esquizofrenia/genética
16.
Brain Behav Immun Health ; 17: 100330, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34661175

RESUMEN

Many studies have reported that patients with psychosis, even before drug treatment, have mildly raised levels of blood cytokines relative to healthy controls. In contrast, there is a remarkable scarcity of studies investigating the cellular basis of immune function and cytokine changes in psychosis. The few flow-cytometry studies have been limited to counting the proportion of the major classes of monocyte and lymphocytes without distinguishing their pro- and anti-inflammatory subsets. Moreover, most of the investigations are cross-sectional and conducted with patients on long-term medication. These features make it difficult to eliminate confounding of illness-related changes by lifestyle factors, disease duration, and long exposure to antipsychotics. This article focuses on regulatory T cells (Tregs), cornerstone immune cells that regulate innate and adaptive immune forces and neuro-immune interactions between astrocytes and microglia. Tregs are also implicated in cardio-metabolic disorders that are common comorbidities of psychosis. We have recently proposed that Tregs are hypofunctional ('h-Tregs') in psychosis driven by our clinical findings and other independent research. Our h-Treg-glial imbalance hypothesis offers a new account for the co-occurrence of systemic immune dysregulation and mechanisms of psychosis development. This article extends our recent review, the h-Treg hypothesis, to cover new discoveries on Treg-based therapies from pre-clinical findings and their clinical implications. We provide a detailed characterisation of Treg studies in psychosis, identifying important methodological limitations and perspectives for scientific innovation. The outcomes presented in this article reaffirms our proposed h-Treg state in psychosis and reveals emerging preclinical research suggesting the potential benefit of Treg-enhancing therapies. There is a clear need for longitudinal studies conducted with drug-naïve or minimally treated patients using more sophisticated techniques of flow-cytometry, CyTOF expression markers, and in vitro co-culture assays to formally test the suppressive capacity of Tregs. Investment in Treg research offers major potential benefits in targeting emerging immunomodulatory treatment modalities on person-specific immune dysregulations.

17.
Br J Pharmacol ; 178 Suppl 1: S27-S156, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529832

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
18.
J Pers Med ; 11(8)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34442438

RESUMEN

Oxidative/nitrosative stress and mitochondrial dysfunction is a hallmark of amyotrophic lateral sclerosis (ALS), an invariably fatal progressive neurodegenerative disease. Here, as an exploratory arm of a phase II clinical trial (EudraCT Number 2017-005065-47), we used high performance liquid chromatography(HPLC) to investigate changes in the metabolic profiles of serum from ALS patients treated weekly for 4 weeks with a repeated sub-cutaneous dose of 1 mg/kg of a proprietary low molecular weight dextran sulphate, called ILB®. A significant normalization of the serum levels of several key metabolites was observed over the treatment period, including N-acetylaspartate (NAA), oxypurines, biomarkers of oxidative/nitrosative stress and antioxidants. An improved serum metabolic profile was accompanied by significant amelioration of the patients' clinical conditions, indicating a response to ILB® treatment that appears to be mediated by improvement of tissue bioenergetics, decrease of oxidative/nitrosative stress and attenuation of (neuro)inflammatory processes.

19.
Sci Rep ; 11(1): 4030, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597595

RESUMEN

Blockade of PD-1/PD-L1 interactions is proving an exciting, durable therapeutic modality in a range of cancers whereby T cells are released from checkpoint inhibition to revive their inherent anti-tumour activity. Here we have studied various ways to model ex vivo T cell function in order to compare the impact of the clinically utilised anti-PD-1 antibody, pembrolizumab (Keytruda) on the activation of human T cells: focussing on the release of pro-inflammatory IFNγ and anti-inflammatory IL-10 to assess functionality. Firstly, we investigated the actions of pembrolizumab in an acute model of T-cell activation with either immature or mature allogeneic dendritic cells (DCs); pembrolizumab enhanced IFNγ and IL-10 release from purified CD4+ T-cells in the majority of donors with a bias towards pro-inflammatory cytokine release. Next, we modelled the impact of pembrolizumab in settings of more chronic T-cell activation. In a 7-day antigen-specific response to EBV peptides, the presence of pembrolizumab resulted in a relatively modest increase in both IFNγ and IL-10 release. Where pembrolizumab was assessed against long-term stimulated CD4+ cells that had up-regulated the exhaustion markers TIM-3 and PD-1, there was a highly effective enhancement of the otherwise exhausted response to allogeneic DCs with respect to IFNγ production. By contrast, the restoration of IL-10 production was considerably more limited. Finally, to assess a direct clinical relevance we investigated the consequence of PD-1/PD-L1 blockade in the disease setting of dissociated cells from lung and colon carcinomas responding to allogeneic DCs: here, pembrolizumab once more enhanced IFNγ production from the majority of tumour preparations whereas, again, the increase in IL-10 release was modest at best. In conclusion, we have shown that the contribution of PD-1-revealed by using a canonical blocking antibody to interrupt its interaction with PD-L1-to the production of an exemplar pro- and anti-inflammatory cytokine, respectively, depends in magnitude and ratio on the particular stimulation setting and activation status of the target T cell. We have identified a number of in vitro assays with response profiles that mimic features of dissociated cell populations from primary tumours thereby indicating these represent disease-relevant functional assays for the screening of immune checkpoint inhibitors in current and future development. Such in vitro assays may also support patient stratification of those likely to respond to immuno-oncology therapies in the wider population.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Activación de Linfocitos/efectos de los fármacos , Linfocitos T/metabolismo , Anticuerpos Monoclonales Humanizados/metabolismo , Antígeno B7-H1/efectos de los fármacos , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Activación de Linfocitos/genética , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/efectos de los fármacos
20.
NPJ Regen Med ; 6(1): 3, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414477

RESUMEN

Fibrotic disease is a major cause of mortality worldwide, with fibrosis arising from prolonged inflammation and aberrant extracellular matrix dynamics. Compromised cellular and tissue repair processes following injury, infection, metabolic dysfunction, autoimmune conditions and vascular diseases leave tissues susceptible to unresolved inflammation, fibrogenesis, loss of function and scarring. There has been limited clinical success with therapies for inflammatory and fibrotic diseases such that there remains a large unmet therapeutic need to restore normal tissue homoeostasis without detrimental side effects. We investigated the effects of a newly formulated low molecular weight dextran sulfate (LMW-DS), termed ILB®, to resolve inflammation and activate matrix remodelling in rodent and human disease models. We demonstrated modulation of the expression of multiple pro-inflammatory cytokines and chemokines in vitro together with scar resolution and improved matrix remodelling in vivo. Of particular relevance, we demonstrated that ILB® acts, in part, by downregulating transforming growth factor (TGF)ß signalling genes and by altering gene expression relating to extracellular matrix dynamics, leading to tissue remodelling, reduced fibrosis and functional tissue regeneration. These observations indicate the potential of ILB® to alleviate fibrotic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA