Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915509

RESUMEN

Underlying drivers of late-onset Alzheimer's disease (LOAD) pathology remain unknown. However, multiple biologically diverse risk factors share a common pathological progression. To identify convergent molecular abnormalities that drive LOAD pathogenesis we compared two common midlife risk factors for LOAD, heavy alcohol use and obesity. This revealed that disrupted lipophagy is an underlying cause of LOAD pathogenesis. Both exposures reduced lysosomal flux, with a loss of neuronal lysosomal acid lipase (LAL). This resulted in neuronal lysosomal lipid (NLL) accumulation, which opposed Aß localization to lysosomes. Neuronal LAL loss both preceded (with aging) and promoted (targeted knockdown) Aß pathology and cognitive deficits in AD mice. The addition of recombinant LAL ex vivo and neuronal LAL overexpression in vivo prevented amyloid increases and improved cognition. In WT mice, neuronal LAL declined with aging and correlated negatively with entorhinal Aß. In healthy human brain, LAL also declined with age, suggesting this contributes to the age-related vulnerability for AD. In human LOAD LAL was further reduced, correlated negatively with Aß 1-42 , and occurred with polymerase pausing at the LAL gene. Together, this finds that the loss of neuronal LAL promotes NLL accumulation to impede degradation of Aß in neuronal lysosomes to drive AD amyloid pathology. Summary: Cellular and molecular drivers of late-onset Alzheimer's disease (LOAD) are unknown, though several risk factors account for the majority of disease incidence 1-5 . Though diverse in their biological natures, each of these risk exposures converge on a shared pathological progression with the accumulation of amyloid early in the disease. Human genetic and transcriptomic studies suggest a role for altered lipid metabolism 6-9 , though the mechanism has been unknown. Here, using two common midlife risk exposures for LOAD, we found that dysfunctional lipophagy caused by the loss of lysosomal acid lipase (LAL) promotes early LOAD pathogenesis. Both midlife obesity and heavy alcohol reduced neuronal LAL, causing an increase in neuronal lysosomal lipid, and a subsequent accumulation of Aß in the extra-lysosomal cytosol. This loss of LAL preceded and promoted Aß pathology and cognitive deficits in AD mice. The addition of recombinant LAL ex vivo and neuronal LAL overexpression in vivo prevented increases in amyloid and improved cognition. In human brain, LAL declined with age in healthy subjects, similar to rodents, showing robust losses in LOAD subjects with polymerase pausing. Together, this implicates neuronal LAL loss in LOAD pathogenesis and presents LAL as a promising diagnostic, preventative, and/or therapeutic target for AD.

2.
Front Behav Neurosci ; 16: 886634, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645744

RESUMEN

Epidemiological studies have found that heavy alcohol use is associated with increased risk for Alzheimer's disease (AD), with frequent drinking earlier in adulthood increasing risk. The increases in neuroinflammation featured in both heavy alcohol use and AD may be partially responsible for this link. However, it is unknown if abstinence mitigates this risk. We hypothesized that binge ethanol during mid adult life would persistently increase AD pathology even after prolonged abstinence. Male and female 3xTg-AD mice (APPSwe, tauP301, Psen1tm1Mpm) which feature progressive amyloid (Aß) and tau pathology, received chronic binge ethanol (5g/kg/day, 5-days-on/2-days-off, i.g.) or water during adulthood (from 5.5 to 9 months of age), followed by abstinence and assessment at 14 months of age. The effects of ethanol on protective AD genes (e.g., APOE and TREM2) as well as proinflammatory genes were measured by PCR. Levels of pathologic tau and Aß were measured by immunohistochemistry and western blot. Ethanol caused persistent reductions in protective AD genes: APOE (25% reduction, *p < 0.05), TREM2 (28%, *p < 0.05), LPL (40%, ** p < 0.01), and CTSD (24%, *p < 0.05) and promoted a proinflammatory gene signature in female, but not male cortex. Concurrently, ethanol increased total and hyperphosphorylated tau (AT8) in piriform cortex and hippocampus of females, but not males. Levels of AT8 were negatively correlated with APOE (R = -0.67, *p < 0.05) and TREM2 (R = -0.78, **p < 0.005) suggesting protective roles in pathogenesis. No differences were found in levels of main regulators of tau phosphorylation state (GSK3ß, PKA, PP2A), suggesting ethanol disrupted clearance of tau. Therefore, we measured the effect of ethanol on lysosomes, which degrade tau, and lysosomal localization of tau using co-immunofluorescence. In females, ethanol caused a persistent reduction in mature LAMP1 lysosomes in CA1 of hippocampus (35%, *p < 0.05), along with a 60% increase in total tau (*p < 0.05). Thus, chronic binge ethanol during mid adult life causes a persistent enhancement of tau pathology in cortical and hippocampal brain regions of females. Persistent AD pathology was associated with an increased proinflammatory signature and a reduction of mature lysosomes. This implicates binge ethanol exposure with increased risk of AD pathologic progression in females.

3.
Front Immunol ; 13: 866073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634322

RESUMEN

Adult hippocampal neurogenesis (AHN) is involved in learning and memory as well as regulation of mood. Binge ethanol reduces AHN, though the mechanism is unknown. Microglia in the neurogenic niche are important regulators of AHN, and ethanol promotes proinflammatory microglia activation. We recently reported that extracellular vesicles (EVs) mediate ethanol-induced inflammatory signaling in microglia. Therefore, we investigated the role of EVs in ethanol-induced loss of adult hippocampal neurogenesis. At rest, microglia promoted neurogenesis through the secretion of pro-neurogenic extracellular vesicles (pn-EVs). Depletion of microglia using colony-stimulating factor 1 receptor (CSFR1) inhibition in vivo or using ex vivo organotypic brain slice cultures (OBSCs) caused a 30% and 56% loss of neurogenesis in the dentate, respectively, as measured by immunohistochemistry for doublecortin (DCX). Likewise, chemogenetic inhibition of microglia using a CD68.hM4di construct caused a 77% loss in OBSC, indicating a pro-neurogenic resting microglial phenotype. EVs from control OBSC were pro-neurogenic (pn-EVs), enhancing neurogenesis when transferred to other naive OBSC and restoring neurogenesis in microglia-depleted cultures. Ethanol inhibited neurogenesis and caused secretion of proinflammatory EVs (EtOH-EVs). EtOH-EVs reduced hippocampal neurogenesis in naïve OBSC by levels similar to ethanol. Neurogenesis involves complex regulation of chromatin structure that could involve EV signaling. Accordingly, EtOH-EVs were found to be enriched with mRNA for the euchromatin histone lysine methyltransferase (Ehm2t/G9a), an enzyme that reduces chromatin accessibility through histone-3 lysine-9 di-methylation (H3K9me2). EtOH-EVs induced G9a and H3K9me2 by 2-fold relative to pn-EVs in naïve OBSCs. Pharmacological inhibition of G9a with either BIX-01294 or UNC0642 prevented loss of neurogenesis caused by both EtOH and EtOH-EVs. Thus, this work finds that proinflammatory EtOH-EVs promote the loss of adult hippocampal neurogenesis through G9a-mediated epigenetic modification of chromatin structure.


Asunto(s)
Etanol , Vesículas Extracelulares , Cromatina , Epigénesis Genética , Etanol/farmacología , Hipocampo , Neurogénesis/fisiología
4.
Front Pharmacol ; 13: 884170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35559229

RESUMEN

Epidemiological studies suggest that heavy alcohol use early in life is associated with increased risk for Alzheimer's disease (AD). However, mechanisms connecting AD with alcohol use have not been identified. Both heavy alcohol use and AD feature increased proinflammatory signaling. Therefore, we hypothesized that adolescent binge ethanol would increase AD molecular and behavioral pathology in adulthood through proinflammatory signaling. The 3xTg-AD mouse model (APPSwe, tauP301, Psen1tm1Mpm) which features amyloid (Aß) and tau pathology beginning at 6-12 months underwent adolescent intermittent ethanol (AIE, 5 g/kg/d, i.g., P25-55) with assessment of AD pathologic mediators at P200. A second group of mice received AIE +/- minocycline (30 mg/kg/d, IP) followed by behavioral testing in adulthood. Behavioral testing and age of testing included: locomotor activity and exploration (27-28 weeks), novel object recognition (NORT, 28-30 weeks), 3-chamber sociability and social memory (29-31 weeks), prepulse inhibition (PPI, 30-32 weeks), Morris Water Maze with reversal (MWM, 31-35 weeks), and Piezo sleep monitoring (35-37 weeks). We found that AIE increased levels of neurotoxic Aß1-42 in adult female hippocampus as well as intraneuronal Aß1-42 in amygdala and entorhinal cortex. Phosphorylated tau at residue Thr181 (p-tau-181) was also increased in female hippocampus by AIE. Several proinflammatory genes were persistently increased by AIE in the female hippocampus, including IL-1ß, MCP-1, IL-6, and IFNα. Expression of these genes was strongly correlated with the levels of Aß1-42 and p-tau-181 in hippocampus. AIE caused persistent decreases in locomotor activity (open-field and NORT habituation) and increased anxiety-like behavior (thigmotaxis) while reducing memory retention. Treatment with the anti-inflammatory compound minocycline during AIE blocked persistent increases in Aß1-42 in amygdala and p-tau-181 in hippocampus, and prevented AIE-induced thigmotaxis and memory loss. Together, these data find that adolescent binge ethanol enhances AD molecular and behavioral pathology in adulthood through proinflammatory signaling. Blockade of proinflammatory signaling during ethanol exposure prevents ethanol-induced effects on pathologic accumulation of AD-associated proteins and persistent behavior changes relevant to human AD.

5.
J Leukoc Biol ; 111(1): 33-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34342045

RESUMEN

Extracellular vesicles (EVs) have emerged as key regulators of immune function across multiple diseases. Severe burn injury is a devastating trauma with significant immune dysfunction that results in an ∼12% mortality rate due to sepsis-induced organ failure, pneumonia, and other infections. Severe burn causes a biphasic immune response: an early (0-72 h) hyper-inflammatory state, with release of damage-associated molecular pattern molecules, such as high-mobility group protein 1 (HMGB1), and proinflammatory cytokines (e.g., IL-1ß), followed by an immunosuppressive state (1-2+ wk post injury), associated with increased susceptibility to life-threatening infections. We have reported that early after severe burn injury HMGB1 and IL-1ß are enriched in plasma EVs. Here we tested the impact of EVs isolated after burn injury on phenotypic and functional consequences in vivo and in vitro using adoptive transfers of EV. EVs isolated early from mice that underwent a 20% total body surface area burn injury (burn EVs) caused similar hallmark cytokine responses in naïve mice to those seen in burned mice. Burn EVs transferred to RAW264.7 macrophages caused similar functional (i.e., cytokine secretion) and immune gene expression changes seen with their associated phase of post-burn immune dysfunction. Burn EVs isolated early (24 h) induced MCP-1, IL-12p70, and IFNγ, whereas EVs isolated later blunted RAW proinflammatory responses to bacterial endotoxin (LPS). We also describe significantly increased HMGB1 cargo in burn EVs purified days 1 to 7 after injury. Thus, burn EVs cause immune outcomes in naïve mice and macrophages similar to findings after severe burn injury, suggesting EVs promote post-burn immune dysfunction.


Asunto(s)
Quemaduras/inmunología , Vesículas Extracelulares/inmunología , Macrófagos/inmunología , Animales , Quemaduras/sangre , Quemaduras/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/patología , Femenino , Proteína HMGB1/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Células RAW 264.7
6.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806288

RESUMEN

Although the cause of progressive neurodegeneration is often unclear, neuronal death can occur through several mechanisms. In conditions such as Alzheimer's or alcohol use disorder (AUD), Toll-like receptor (TLR) induction is observed with neurodegeneration. However, links between TLR activation and neurodegeneration are lacking. We report a role of apoptotic neuronal death in AUD through TLR7-mediated induction of death receptor signaling. In postmortem human cortex, a two-fold increase in apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in neurons was found in AUD versus controls. This occurred with the increased expression of TLR7 and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors. Binge ethanol treatment in C57BL/6 mice increased TLR7 and induced neuronal apoptosis in cortical regions that was blocked by TLR7 antagonism. Mechanistic studies in primary organotypic brain slice culture (OBSC) found that the inhibition of TLR7 and its endogenous ligand let-7b blocked ethanol-induced neuronal cell death. Both IMQ and ethanol induced the expression of TRAIL and its death receptor. In addition, TRAIL-neutralizing monoclonal antibodies blocked both imiquimod (IMQ) and ethanol induced neuronal death. These findings implicate TRAIL as a mediator of neuronal apoptosis downstream of TLR7 activation. TLR7 and neuronal apoptosis are implicated in other neurodegenerative diseases, including Alzheimer's disease. Therefore, TRAIL may represent a therapeutic target to slow neurodegeneration in multiple diseases.


Asunto(s)
Alcoholismo/metabolismo , Alcoholismo/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Adulto , Animales , Apoptosis , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Consumo Excesivo de Bebidas Alcohólicas/patología , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Modelos Neurológicos , Neuronas/metabolismo , Neuronas/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 7/metabolismo , Adulto Joven
8.
J Community Psychol ; 48(7): 2208-2220, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32720322

RESUMEN

The current study explores how organizational norms within mentoring organizations predict mentor outcomes over and above individual mentor characteristics. Specifically, this study examines whether mean levels (as an indicator of organizational norms) of mentors' perceptions of their relationship quality with mentees' families predict mentor satisfaction, mentor intent to stay and mentor extra-role prosocial behavior over and above individual mentor perception of their relationship quality with mentees' families. Multilevel modeling was used to assess 204 mentors nested within 37 mentoring organizations. The current study found that mentor organization averages of perceived relationship quality with mentees' families positively predicted mentor extra-role prosocial behavior over and above the individual mentor perceptions of relationship quality with mentees' families. Additionally, organizational averages negatively predicted mentor intent to stay, while individual mentor perceptions positively predicted mentor intent to stay. Results have implications for mentoring organizations to create organizational norms that reduce burnout, increase continuity of mentor relationships, and help mentors go above and beyond on behalf of their mentees and mentoring organization.


Asunto(s)
Relaciones Interpersonales , Mentores/psicología , Adolescente , Altruismo , Niño , Familia/psicología , Femenino , Humanos , Masculino , Tutoría/organización & administración , Cultura Organizacional , Satisfacción Personal , Encuestas y Cuestionarios , Voluntarios/psicología
9.
J Prev Interv Community ; 42(3): 221-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25050606

RESUMEN

This manuscript summarizes an iterative process used to develop a new intervention for low-income urban youth at risk for negative academic outcomes (e.g., disengagement, failure, drop-out). A series of seven steps, building incrementally one upon the other, are described: 1) identify targets of the intervention; 2) develop logic model; 3) identify effective elements of targets; 4) vet intervention with stakeholders; 5) develop models for sustaining the intervention; 6) develop measures of relevant constructs currently missing from the literature; 7) assess feasibility and usability of the intervention. Methods used to accomplish these steps include basic research studies, literature reviews, meta-analyses, focus groups, community advisory meetings, consultations with scholarly consultants, and piloting. The resulting intervention provides early adolescents in low-income urban communities with a) training in contextually relevant coping, b) connection to mentors who support youth's developing coping strategies, and c) connection to youth-serving community organizations, where youth receive additional support.


Asunto(s)
Logro , Adaptación Psicológica , Conducta del Adolescente/psicología , Escolaridad , Mentores , Pobreza , Estrés Psicológico/psicología , Adolescente , Femenino , Humanos , Relaciones Interpersonales , Masculino , Desarrollo de Programa , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA