Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D1305-D1314, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953304

RESUMEN

In 2003, the Human Disease Ontology (DO, https://disease-ontology.org/) was established at Northwestern University. In the intervening 20 years, the DO has expanded to become a highly-utilized disease knowledge resource. Serving as the nomenclature and classification standard for human diseases, the DO provides a stable, etiology-based structure integrating mechanistic drivers of human disease. Over the past two decades the DO has grown from a collection of clinical vocabularies, into an expertly curated semantic resource of over 11300 common and rare diseases linking disease concepts through more than 37000 vocabulary cross mappings (v2023-08-08). Here, we introduce the recently launched DO Knowledgebase (DO-KB), which expands the DO's representation of the diseaseome and enhances the findability, accessibility, interoperability and reusability (FAIR) of disease data through a new SPARQL service and new Faceted Search Interface. The DO-KB is an integrated data system, built upon the DO's semantic disease knowledge backbone, with resources that expose and connect the DO's semantic knowledge with disease-related data across Open Linked Data resources. This update includes descriptions of efforts to assess the DO's global impact and improvements to data quality and content, with emphasis on changes in the last two years.


Asunto(s)
Ecosistema , Bases del Conocimiento , Humanos , Enfermedades Raras , Semántica , Factores de Tiempo
2.
Database (Oxford) ; 20232023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36856688

RESUMEN

As a genomic resource provider, grappling with getting a handle on how your resource is utilized can be extremely challenging. At the same time, being able to thus document the plethora of use cases is vital to demonstrate sustainability. Herein, we describe a flexible workflow, built on readily available software, that the Human Disease Ontology (DO) project has utilized to transition to semi-automated methods to identify uses of the ontology in the published literature. The novel R package DO.utils (https://github.com/DiseaseOntology/DO.utils) has been devised with a small set of key functions to support our usage workflow in combination with Google Sheets. Use of this workflow has resulted in a 3-fold increase in the number of identified publications that use the DO and has provided novel usage insights that offer new research directions and reveal a clearer picture of the DO's use and scientific impact. The DO's resource use assessment workflow and the supporting software are designed to be useful to other resources, including databases, software tools, method providers and other web resources, to achieve similar results. Database URL: https://github.com/DiseaseOntology/DO.utils.


Asunto(s)
Genómica , Programas Informáticos , Humanos , Bases de Datos Factuales , Flujo de Trabajo
3.
J Transl Med ; 21(1): 148, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36829165

RESUMEN

BACKGROUND: Complex diseases often present as a diagnosis riddle, further complicated by the combination of multiple phenotypes and diseases as features of other diseases. With the aim of enhancing the determination of key etiological factors, we developed and tested a complex disease model that encompasses diverse factors that in combination result in complex diseases. This model was developed to address the challenges of classifying complex diseases given the evolving nature of understanding of disease and interaction and contributions of genetic, environmental, and social factors. METHODS: Here we present a new approach for modeling complex diseases that integrates the multiple contributing genetic, epigenetic, environmental, host and social pathogenic effects causing disease. The model was developed to provide a guide for capturing diverse mechanisms of complex diseases. Assessment of disease drivers for asthma, diabetes and fetal alcohol syndrome tested the model. RESULTS: We provide a detailed rationale for a model representing the classification of complex disease using three test conditions of asthma, diabetes and fetal alcohol syndrome. Model assessment resulted in the reassessment of the three complex disease classifications and identified driving factors, thus improving the model. The model is robust and flexible to capture new information as the understanding of complex disease improves. CONCLUSIONS: The Human Disease Ontology's Complex Disease model offers a mechanism for defining more accurate disease classification as a tool for more precise clinical diagnosis. This broader representation of complex disease, therefore, has implications for clinicians and researchers who are tasked with creating evidence-based and consensus-based recommendations and for public health tracking of complex disease. The new model facilitates the comparison of etiological factors between complex, common and rare diseases and is available at the Human Disease Ontology website.


Asunto(s)
Asma , Diabetes Mellitus , Trastornos del Espectro Alcohólico Fetal , Embarazo , Femenino , Humanos , Causalidad
4.
Nucleic Acids Res ; 50(D1): D1255-D1261, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34755882

RESUMEN

The Human Disease Ontology (DO) (www.disease-ontology.org) database, has significantly expanded the disease content and enhanced our userbase and website since the DO's 2018 Nucleic Acids Research DATABASE issue paper. Conservatively, based on available resource statistics, terms from the DO have been annotated to over 1.5 million biomedical data elements and citations, a 10× increase in the past 5 years. The DO, funded as a NHGRI Genomic Resource, plays a key role in disease knowledge organization, representation, and standardization, serving as a reference framework for multiscale biomedical data integration and analysis across thousands of clinical, biomedical and computational research projects and genomic resources around the world. This update reports on the addition of 1,793 new disease terms, a 14% increase of textual definitions and the integration of 22 137 new SubClassOf axioms defining disease to disease connections representing the DO's complex disease classification. The DO's updated website provides multifaceted etiology searching, enhanced documentation and educational resources.


Asunto(s)
Ontologías Biológicas , Bases de Datos Factuales , Bases de Datos Genéticas , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/genética , Genómica/clasificación , Humanos
5.
Toxicology ; 464: 153021, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34740672

RESUMEN

Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 µg/kg MCLR (i.p: 2 weeks, alternate days). Animals were euthanized at one of three time points: at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.


Asunto(s)
Matriz Extracelular/patología , Cirrosis Hepática/fisiopatología , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Diferenciación Celular/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Matriz Extracelular/genética , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Enfermedad del Hígado Graso no Alcohólico/genética , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
6.
Biochem Biophys Res Commun ; 462(3): 251-6, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25956063

RESUMEN

In eukaryotes, the Cu/Zn containing superoxide dismutase (SOD1) plays a critical role in oxidative stress protection as well as in signaling. We recently demonstrated a function for Saccharomyces cerevisiae Sod1p in signaling through CK1γ casein kinases and identified the essential proton ATPase Pma1p as one likely target. The connection between Sod1p and Pma1p was explored further by testing the impact of sod1Δ mutations on cells expressing mutant alleles of Pma1p that alter activity and/or post-translational regulation of this ATPase. We report here that sod1Δ mutations are lethal when combined with the T912D allele of Pma1p in the C-terminal regulatory domain. This "synthetic lethality" was reversed by intragenic suppressor mutations in Pma1p, including an A906G substitution that lies within the C-terminal regulatory domain and hyper-activates Pma1p. Surprisingly the effect of sod1Δ mutations on Pma1-T912D is not mediated through the Sod1p signaling pathway involving the CK1γ casein kinases. Rather, Sod1p sustains life of cells expressing Pma1-T912D through oxidative stress protection. The synthetic lethality of sod1Δ Pma1-T912D cells is suppressed by growing cells under low oxygen conditions or by treatments with manganese-based antioxidants. We now propose a model in which Sod1p maximizes Pma1p activity in two ways: one involving signaling through CK1γ casein kinases and an independent role for Sod1p in oxidative stress protection.


Asunto(s)
ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Superóxido Dismutasa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Sustitución de Aminoácidos , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Genes Fúngicos , Modelos Biológicos , Modelos Moleculares , Mutación , Estrés Oxidativo , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
7.
J Biol Chem ; 288(7): 4557-66, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23281478

RESUMEN

Although yeast cells grown in abundant glucose tend to acidify their extracellular environment, they raise the pH of the environment when starved for glucose or when grown strictly with non-fermentable carbon sources. Following prolonged periods in this alkaline phase, Saccharomyces cerevisiae cells will switch to producing acid. The mechanisms and rationale for this "acid burst" were unknown. Herein we provide strong evidence for the role of mitochondrial superoxide in initiating the acid burst. Yeast mutants lacking the mitochondrial matrix superoxide dismutase (SOD2) enzyme, but not the cytosolic Cu,Zn-SOD1 enzyme, exhibited marked acceleration in production of acid on non-fermentable carbon sources. Acid production is also dramatically enhanced by the superoxide-producing agent, paraquat. Conversely, the acid burst is eliminated by boosting cellular levels of Mn-antioxidant mimics of SOD. We demonstrate that the acid burst is dependent on the mitochondrial aldehyde dehydrogenase Ald4p. Our data are consistent with a model in which mitochondrial superoxide damage to Fe-S enzymes in the tricarboxylic acid (TCA) cycle leads to acetate buildup by Ald4p. The resultant expulsion of acetate into the extracellular environment can provide a new carbon source to glucose-starved cells and enhance growth of yeast. By triggering production of organic acids, mitochondrial superoxide has the potential to promote cell population growth under nutrient depravation stress.


Asunto(s)
Ácidos/química , Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxidos/química , Ácido Acético/química , Aldehído Deshidrogenasa/metabolismo , Antioxidantes/metabolismo , Carbono/química , Citosol/enzimología , Ambiente , Glucosa/química , Concentración de Iones de Hidrógeno , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxidos/metabolismo , Ácidos Tricarboxílicos/química
8.
Biochemistry ; 51(2): 677-85, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22148750

RESUMEN

In eukaryotic organisms, the largely cytosolic copper- and zinc-containing superoxide dismutase (Cu/Zn SOD) enzyme represents a key defense against reactive oxygen toxicity. Although much is known about the biology of this enzyme under aerobic conditions, less is understood regarding the effects of low oxygen levels on Cu/Zn SOD enzymes from diverse organisms. We show here that like bakers' yeast (Saccharomyces cerevisiae), adaptation of the multicellular Caenorhabditis elegans to growth at low oxygen levels involves strong downregulation of its Cu/Zn SOD. Much of this regulation occurs at the post-translational level where CCS-independent activation of Cu/Zn SOD is inhibited. Hypoxia inactivates the endogenous Cu/Zn SOD of C. elegans Cu/Zn SOD as well as a P144 mutant of S. cerevisiae Cu/Zn SOD (herein denoted Sod1p) that is independent of CCS. In our studies of S. cerevisiae Sod1p, we noted a post-translational modification to the inactive enzyme during hypoxia. Analysis of this modification by mass spectrometry revealed phosphorylation at serine 38. Serine 38 represents a putative proline-directed kinase target site located on a solvent-exposed loop that is positioned at one end of the Sod1p ß-barrel, a region immediately adjacent to residues previously shown to influence CCS-dependent activation. Although phosphorylation of serine 38 is minimal when the Sod1p is abundantly active (e.g., high oxygen level), up to 50% of Sod1p can be phosphorylated when CCS activation of the enzyme is blocked, e.g., by hypoxia or low-copper conditions. Serine 38 phosphorylation can be a marker for inactive pools of Sod1p.


Asunto(s)
Caenorhabditis elegans/enzimología , Cobre/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/enzimología , Superóxido Dismutasa/metabolismo , Zinc/metabolismo , Anaerobiosis/efectos de los fármacos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Oxígeno/farmacología , Fosforilación/efectos de los fármacos , Conformación Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Serina/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...